Polyglutamine (PolyQ) Diseases: Genetics to Treatments

The polyglutamine (polyQ) diseases are a group of neurodegenerative disorders caused by expanded cytosine– adenine–guanine (CAG) repeats encoding a long polyQ tract in the respective proteins. To date, a total of nine polyQ disorders have been described: six spinocerebellar ataxias (SCA) types 1, 2, 6, 7, 17; Machado–Joseph disease (MJD/SCA3); Huntington's disease (HD); dentatorubral pallidoluysian atrophy (DRPLA); and spinal and bulbar muscular atrophy, X-linked 1 (SMAX1/SBMA). PolyQ diseases are characterized by the pathological expansion of CAG trinucleotide repeat in the translated region of unrelated genes. The translated polyQ is aggregated in the degenerated neurons leading to the dysfunction and degeneration of specific neuronal subpopulations. Although animal models of polyQ disease for understanding human pathology and accessing disease-modifying therapies in neurodegenerative diseases are available, there is neither a cure nor prevention for these diseases, and only symptomatic treatments for polyQ diseases currently exist. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Cellular transplantation of stem cells may provide promising therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in polyQ diseases.

[1]  D. Rubinsztein,et al.  Autophagy and polyglutamine diseases , 2012, Progress in Neurobiology.

[2]  Olivier Voinnet,et al.  Antiviral Immunity Directed by Small RNAs , 2007, Cell.

[3]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[4]  Martin L. Duennwald,et al.  Impaired Heat Shock Response in Cells Expressing Full-Length Polyglutamine-Expanded Huntingtin , 2012, PloS one.

[5]  S. Tsuji,et al.  Neuronal atrophy and synaptic alteration in a mouse model of dentatorubral-pallidoluysian atrophy. , 2006, Brain : a journal of neurology.

[6]  A. Benraiss,et al.  Cellular Therapy and Induced Neuronal Replacement for Huntington’s Disease , 2011, Neurotherapeutics.

[7]  小出 玲爾,et al.  A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene : a new polyglutamine disease? , 2000 .

[8]  H. Okano,et al.  Enhanced Aggregation of Androgen Receptor in Induced Pluripotent Stem Cell-derived Neurons from Spinal and Bulbar Muscular Atrophy* , 2013, The Journal of Biological Chemistry.

[9]  K. Blomgren,et al.  Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue : a role for protease activation , 2016 .

[10]  U. Rüb,et al.  New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado–Joseph disease) , 2008, Current opinion in neurology.

[11]  M. MacDonald,et al.  Reduced penetrance of the Huntington's disease mutation. , 1997, Human molecular genetics.

[12]  Osamu Onodera,et al.  Sporadic ataxias in Japan – a population-based epidemiological study , 2008, The Cerebellum.

[13]  G. Bonvento,et al.  Sustained effects of nonallele‐specific Huntingtin silencing , 2009, Annals of neurology.

[14]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[15]  M. Beal,et al.  Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice , 2003, Nature Biotechnology.

[16]  K. Fischbeck,et al.  Toxic Proteins in Neurodegenerative Disease , 2002, Science.

[17]  Harry T Orr,et al.  Trinucleotide repeat disorders. , 2007, Annual review of neuroscience.

[18]  G. Sobue,et al.  X-linked recessive bulbospinal neuronopathy. A clinicopathological study. , 1989, Brain : a journal of neurology.

[19]  V. Meininger,et al.  Spinobulbar muscular atrophy can mimic ALS: The importance of genetic testing in male patients with atypical ALS , 1997, Neurology.

[20]  M. MacDonald,et al.  Amyloid Formation by Mutant Huntingtin: Threshold, Progressivity and Recruitment of Normal Polyglutamine Proteins , 1998, Somatic cell and molecular genetics.

[21]  Anders Björklund,et al.  Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[23]  R. Stewart,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[24]  鈴木 啓介 CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA , 2008 .

[25]  Y. Agid,et al.  Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. , 1997, Human molecular genetics.

[26]  O. Bang,et al.  A Long‐Term Follow‐Up Study of Intravenous Autologous Mesenchymal Stem Cell Transplantation in Patients With Ischemic Stroke , 2010, Stem cells.

[27]  R. Feldman,et al.  Azorean disease of the nervous system. , 1977, The New England journal of medicine.

[28]  Min Han,et al.  Sodium Butyrate Ameliorates Histone Hypoacetylation and Neurodegenerative Phenotypes in a Mouse Model for DRPLA* , 2006, Journal of Biological Chemistry.

[29]  Yasuo Terao,et al.  Evaluation of spinal and bulbar muscular atrophy by the clustering index method , 2011, Muscle & nerve.

[30]  S. Totey,et al.  Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. , 2010, Translational research : the journal of laboratory and clinical medicine.

[31]  Làszlò Tora,et al.  Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. , 2004, Human molecular genetics.

[32]  G. Sobue,et al.  Current Status of Treatment of Spinal and Bulbar Muscular Atrophy , 2012, Neural plasticity.

[33]  M. Emborg,et al.  Preclinical assessment of stem cell therapies for neurological diseases. , 2009, ILAR journal.

[34]  M. Hayden,et al.  Nuclear Localization of a Non-caspase Truncation Product of Atrophin-1, with an Expanded Polyglutamine Repeat, Increases Cellular Toxicity* , 2003, The Journal of Biological Chemistry.

[35]  George Q. Daley,et al.  Disease-Specific Induced Pluripotent Stem Cells , 2008, Cell.

[36]  O. Isacson,et al.  Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells , 2007, PloS one.

[37]  O. Onodera,et al.  Atrophy of the cerebellum and brainstem in dentatorubral pallidoluysian atrophy , 1997, Neurology.

[38]  D. Borchelt,et al.  Nuclear Accumulation of Truncated Atrophin-1 Fragments in a Transgenic Mouse Model of DRPLA , 1999, Neuron.

[39]  I. Kanazawa,et al.  Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. , 1999, Human molecular genetics.

[40]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[41]  Elena Cattaneo,et al.  Molecular mechanisms and potential therapeutical targets in Huntington's disease. , 2010, Physiological reviews.

[42]  A. Barrientos,et al.  Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. , 2006, Human molecular genetics.

[43]  D. Butler,et al.  Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins , 2012, Progress in Neurobiology.

[44]  L. Santoro,et al.  Sensory involvement in spinal‐bulbar muscular atrophy (Kennedy's disease) , 2000, Muscle & nerve.

[45]  M. Segal,et al.  Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro , 1996, Mechanisms of Development.

[46]  C. Ware,et al.  Polyglutamine-Expanded Ataxin-7 Antagonizes CRX Function and Induces Cone-Rod Dystrophy in a Mouse Model of SCA7 , 2001, Neuron.

[47]  K. Huh,et al.  Autologous Mesenchymal Stem Cell Therapy Delays the Progression of Neurological Deficits in Patients With Multiple System Atrophy , 2008, Clinical pharmacology and therapeutics.

[48]  G. Sobue,et al.  Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA) , 2012, Progress in Neurobiology.

[49]  G. Sobue,et al.  Disrupted Transforming Growth Factor-β Signaling in Spinal and Bulbar Muscular Atrophy , 2010, The Journal of Neuroscience.

[50]  Paola Giunti,et al.  Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1 , 2008, The Cerebellum.

[51]  Peter Bauer,et al.  Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6 , 2010, NeuroImage.

[52]  A. Young,et al.  Milestones in Huntington disease , 2011, Movement disorders : official journal of the Movement Disorder Society.

[53]  Edwin J. Weeber,et al.  SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity , 2003, Neuron.

[54]  Erich E Wanker,et al.  The hunt for huntingtin function: interaction partners tell many different stories. , 2003, Trends in biochemical sciences.

[55]  C. Shaw,et al.  Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model , 2007, PLoS Medicine.

[56]  S. Dunnett,et al.  The morphological development of neurons derived from EGF‐ and FGF‐2‐driven human CNS precursors depends on their site of integration in the neonatal rat brain , 2000, The European journal of neuroscience.

[57]  H. Zoghbi,et al.  Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction , 2006, PLoS biology.

[58]  Y. Agid,et al.  Clinical and molecular features of spinocerebellar ataxia type 6 , 1997, Neurology.

[59]  Thorsten Schmidt,et al.  Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis , 2004, The Lancet Neurology.

[60]  Y. Chan,et al.  Huntington's disease in Hong Kong Chinese: epidemiology and clinical picture. , 1994, Clinical and experimental neurology.

[61]  O. Lee,et al.  Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells , 2011, Journal of Biomedical Science.

[62]  A Dürr,et al.  Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. , 1998, Human molecular genetics.

[63]  D. Housman,et al.  The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Rubinsztein,et al.  Autophagy and misfolded proteins in neurodegeneration , 2012, Experimental Neurology.

[65]  J. Finsterer Perspectives of Kennedy's disease , 2010, Journal of the Neurological Sciences.

[66]  W. Rostène,et al.  Highly regionalized distribution of stromal cell‐derived factor‐1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons , 2003, The European journal of neuroscience.

[67]  R. Barker,et al.  Cell therapies for neurological disease – from bench to clinic to bench , 2005, Expert opinion on biological therapy.

[68]  C. Polkey,et al.  Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[69]  N. Chahin,et al.  Serum creatine kinase levels in spinobulbar muscular atrophy and amyotrophic lateral sclerosis , 2009, Muscle & nerve.

[70]  T. Kachi,et al.  Subclinical phenotypic expressions in heterozygous females of X-linked recessive bulbospinal neuronopathy , 1993, Journal of the Neurological Sciences.

[71]  T. Klockgether,et al.  Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. , 2005, Archives of neurology.

[72]  Georg Auburger,et al.  Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7 , 2013, Progress in Neurobiology.

[73]  勝野 雅央 Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy , 2003 .

[74]  S. Tsuji,et al.  Postural tremor in X‐linked spinal and bulbar muscular atrophy , 2009, Movement disorders : official journal of the Movement Disorder Society.

[75]  E. Hirsch,et al.  Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. , 2006, The Journal of clinical investigation.

[76]  Spinocerebellar ataxia type 6 (SCA6): Clinical pilot trial with gabapentin , 2009, Journal of the Neurological Sciences.

[77]  R. Roos,et al.  Huntington's disease: a clinical review , 2010, Orphanet journal of rare diseases.

[78]  S. Warren,et al.  Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration , 2007, Nature Neuroscience.

[79]  T. Gillis,et al.  Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. , 2012, Cell stem cell.

[80]  H. Wichterle,et al.  Directed Differentiation of Embryonic Stem Cells into Motor Neurons , 2002, Cell.

[81]  Gordon J. Gilbert WEIGHT LOSS IN HUNTINGTON DISEASE INCREASES WITH HIGHER CAG REPEAT NUMBER , 2009 .

[82]  G. Sobue,et al.  Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy , 2003, Nature Medicine.

[83]  Wolfgang Grodd,et al.  Proton MRS in Kennedy disease: Absolute metabolite and macromolecular concentrations , 2002, Journal of magnetic resonance imaging : JMRI.

[84]  I. Kanazawa,et al.  DNA analysis in hereditary dentatorubral-pallidoluysian atrophy , 1995, Neurology.

[85]  M. Hayden,et al.  High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia , 2001, Clinical genetics.

[86]  W. G. Johnson,et al.  Ataxin-3 Interactions with Rad23 and Valosin-Containing Protein and Its Associations with Ubiquitin Chains and the Proteasome Are Consistent with a Role in Ubiquitin-Mediated Proteolysis , 2003, Molecular and Cellular Biology.

[87]  S. Harper,et al.  Optimization of Feline Immunodeficiency Virus Vectors for RNA Interference , 2006, Journal of Virology.

[88]  L. Martin,et al.  Transplanted human embryonic germ cell‐derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain damage , 2005, Journal of neuroscience research.

[89]  P. Chinnery,et al.  Minimum prevalence of spinocerebellar ataxia 17 in the north east of England , 2005, Journal of the Neurological Sciences.

[90]  Huiyi Wang,et al.  Castration Restores Function and Neurofilament Alterations of Aged Symptomatic Males in a Transgenic Mouse Model of Spinal and Bulbar Muscular Atrophy , 2004, The Journal of Neuroscience.

[91]  S. Weiss,et al.  A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Dobrila D. Rudnicki,et al.  An Antisense CAG Repeat Transcript at JPH3 Locus Mediates Expanded Polyglutamine Protein Toxicity in Huntington's Disease-like 2 Mice , 2011, Neuron.

[93]  Jan Kassubek,et al.  Widespread white matter changes in Kennedy disease: a voxel based morphometry study , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[94]  G. Sobue,et al.  Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. , 2006, Brain : a journal of neurology.

[95]  S. Fields,et al.  Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Yasuko Hayashi,et al.  Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain , 1998, Acta Neuropathologica.

[97]  S. Gilman The spinocerebellar ataxias. , 2000, Clinical neuropharmacology.

[98]  N. Nukina,et al.  Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease , 2004, Nature Medicine.

[99]  K. Fischbeck,et al.  Standard and modified statistical mune evaluations in spinal‐bulbar muscular atrophy , 2009, Muscle & nerve.

[100]  A. Solodkin,et al.  Spinocerebellar ataxia type 6. , 2013, Handbook of clinical neurology.

[101]  A. Harding,et al.  X-linked recessive bulbospinal neuronopathy: a report of ten cases. , 1982, Journal of neurology, neurosurgery, and psychiatry.

[102]  James A. Thomson,et al.  Induced pluripotent stem cells from a spinal muscular atrophy patient , 2009, Nature.

[103]  K. Tashiro,et al.  Clinical features and natural history of spinocerebellar ataxia type 1 , 1996, Acta neurologica Scandinavica.

[104]  J. Jaramillo-Merchán,et al.  Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia , 2010, Neurobiology of Disease.

[105]  E. Tolosa,et al.  Severe cerebral white matter involvement in a case of dentatorubropallidoluysian atrophy studied at autopsy. , 2004, Archives of neurology.

[106]  J. Sahel,et al.  Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. , 2000, Human molecular genetics.

[107]  J. Gusella,et al.  Huntington's disease. Pathogenesis and management. , 1986, The New England journal of medicine.

[108]  L. Schöls,et al.  Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites , 2009, Neuropathology and applied neurobiology.

[109]  A. Ludolph,et al.  X-linked bulbospinal neuronopathy: Kennedy disease. , 2002, Archives of neurology.

[110]  C. Ross,et al.  A Mutant Ataxin-3 Putative-Cleavage Fragment in Brains of Machado-Joseph Disease Patients and Transgenic Mice Is Cytotoxic above a Critical Concentration , 2004, The Journal of Neuroscience.

[111]  T. Hatano,et al.  Cervical dystonia in dentatorubral‐pallidoluysian atrophy , 2003, Acta neurologica Scandinavica.

[112]  S. Tsuji,et al.  FAT10 Protein Binds to Polyglutamine Proteins and Modulates Their Solubility* , 2011, The Journal of Biological Chemistry.

[113]  Huda Y. Zoghbi,et al.  Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles , 2005, Nature Reviews Genetics.

[114]  K. Nakano,et al.  Machado disease , 1972, Neurology.

[115]  S. Henikoff,et al.  Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity , 2002 .

[116]  G. Sobue,et al.  Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy , 2007, Neuropathology and applied neurobiology.

[117]  David I. Wilson,et al.  Derivation of Human Embryonic Germ Cells: An Alternative Source of Pluripotent Stem Cells , 2003, Stem cells.

[118]  S. Oyanagi,et al.  Familial myoclonus epilepsy and choreoathetosis , 1982, Neurology.

[119]  S. Pulst,et al.  Expression of ataxin‐2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2 , 1999, Annals of neurology.

[120]  P. Kasten,et al.  Culture media for the differentiation of mesenchymal stromal cells. , 2011, Acta biomaterialia.

[121]  C. Henderson,et al.  Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS , 2005, Nature Medicine.

[122]  C. Svendsen,et al.  Neural Stem Cells: From Cell Biology to Cell Replacement , 2000, Cell transplantation.

[123]  T. Kachi,et al.  Severity of X‐linked recessive bulbospinal neuronopathy correlates with size of the tandem cag repeat in androgen receptor gene , 1992, Annals of neurology.

[124]  S. Tsuji,et al.  Dentatorubral-pallidoluysian atrophy (DRPLA). , 2000, Journal of neural transmission. Supplementum.

[125]  I. Kanazawa,et al.  Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription , 2000, Nature Genetics.

[126]  Yi Li,et al.  Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats , 2003, Circulation research.

[127]  I. Kanazawa,et al.  Abnormal gene product identified in hereditary dentatorubral–pallidoluysian atrophy (DRPLA) brain , 1995, Nature Genetics.

[128]  Ren-Shyan Liu,et al.  Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease , 1998, Journal of neurology, neurosurgery, and psychiatry.

[129]  Tobias Wittkop,et al.  Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. , 2012, Cell stem cell.

[130]  T. Mizutani,et al.  Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells , 2001, Neurology.

[131]  Claire-Anne Gutekunst,et al.  A YAC Mouse Model for Huntington’s Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration , 1999, Neuron.

[132]  J. Brandt,et al.  Predictors of neuropathological severity in 100 patients with Huntington's disease , 2003, Annals of neurology.

[133]  J. Mertens,et al.  Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease , 2011, Nature.

[134]  Peter J. Donovan,et al.  Derivation of pluripotent stem cells from cultured human primordial germ cells , 1998 .

[135]  P. Andersen,et al.  Multiple founder effects in spinal and bulbar muscular atrophy (SBMA, Kennedy disease) around the world , 2001, European Journal of Human Genetics.

[136]  G. Sobue,et al.  Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[137]  D. Rubinsztein,et al.  Therapeutic induction of autophagy to modulate neurodegenerative disease progression , 2013, Acta Pharmacologica Sinica.

[138]  Xiao-Jiang Li,et al.  Huntingtin-protein interactions and the pathogenesis of Huntington's disease. , 2004, Trends in genetics : TIG.

[139]  G. van Ommen,et al.  Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide , 2011, PloS one.

[140]  N. Nukina,et al.  The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies , 2009, Journal of neurochemistry.

[141]  A. Joyner,et al.  Inactivation of the mouse Huntington's disease gene homolog Hdh. , 1995, Science.

[142]  R. Lindenbaum,et al.  Prevalence of Huntington's Disease Among Uk , 1990, British Journal of Psychiatry.

[143]  L. Santoro,et al.  Electrophysiologic characterization in spinocerebellar ataxia 17 , 2006, Neurology.

[144]  Yue-Cune Chang,et al.  Dentatorubropallidoluysian atrophy in Chinese. , 2001, Archives of neurology.

[145]  S. Pulst,et al.  Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 2 , 2009, The Journal of Neuroscience.

[146]  S. Floresco,et al.  Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes , 1995, Cell.

[147]  D. Rubinsztein,et al.  Transcriptional abnormalities in Huntington disease. , 2003, Trends in genetics : TIG.

[148]  S. Narumiya,et al.  Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo , 1996, Nature Genetics.

[149]  A. Trounson,et al.  Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro , 2000, Nature Biotechnology.

[150]  J. Guimarães,et al.  Portuguese families with dentatorubropallidoluysian atrophy (DRPLA) share a common haplotype of Asian origin , 2003, European Journal of Human Genetics.

[151]  H. Paulson,et al.  Defining the Role of Ubiquitin-interacting Motifs in the Polyglutamine Disease Protein, Ataxin-3* , 2005, Journal of Biological Chemistry.

[152]  K. Fischbeck,et al.  Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy , 1991, Nature.

[153]  M. Ramos-Arroyo,et al.  Incidence and mutation rates of Huntington’s disease in Spain: experience of 9 years of direct genetic testing , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[154]  J. Willey,et al.  PRESTROKE PHYSICAL ACTIVITY IS ASSOCIATED WITH SEVERITY AND LONG-TERM OUTCOME FROM FIRST-EVER STROKE , 2009, Neurology.

[155]  A. Ferlini,et al.  Epidemiological survey of X-linked bulbar and spinal muscular atrophy, or Kennedy disease, in the province of Reggio Emilia, Italy , 2004, European Journal of Epidemiology.

[156]  Chuan-en Wang,et al.  Polyglutamine Expansion Reduces the Association of TATA-binding Protein with DNA and Induces DNA Binding-independent Neurotoxicity* , 2008, Journal of Biological Chemistry.

[157]  A. Spada,et al.  Polyglutamines Placed into Context , 2003, Neuron.

[158]  Thomas Vierbuchen,et al.  Direct conversion of fibroblasts to functional neurons by defined factors , 2010, Nature.

[159]  M. Lima,et al.  Analysis of segregation patterns in Machado-Joseph disease pedigrees , 2008, Journal of Human Genetics.

[160]  N. Malamud,et al.  Unusual form of cerebellar ataxia , 1958, Neurology.

[161]  H. Zoghbi,et al.  Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. , 1998, American journal of human genetics.

[162]  E. Melamed,et al.  Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents , 2006, Neuroscience Letters.

[163]  S. Schiffmann,et al.  Grafting Neural Precursor Cells Promotes Functional Recovery in an SCA1 Mouse Model , 2009, The Journal of Neuroscience.

[164]  C. Crochemore,et al.  Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model , 2011, Journal of neurochemistry.

[165]  Shihua Li,et al.  Activation of Gene Transcription by Heat Shock Protein 27 May Contribute to Its Neuronal Protection* , 2009, The Journal of Biological Chemistry.

[166]  L. Fouillard,et al.  Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation , 2007, Leukemia.

[167]  C. Ross,et al.  Widespread occurrence of intranuclear atrophin‐1 accumulation in the central nervous system neurons of patients with dentatorubral‐pallidoluysian atrophy , 2001, Annals of neurology.

[168]  I. Guzhova,et al.  Pharmacological protein targets in polyglutamine diseases: Mutant polypeptides and their interactors , 2013, FEBS letters.

[169]  A. Koeppen,et al.  The pathogenesis of spinocerebellar ataxia , 2008, The Cerebellum.

[170]  P. Coutinho,et al.  Machado-Joseph disease. , 1995, Clinical neuroscience.

[171]  Christine Klein,et al.  Focal dystonia as a presenting sign of spinocerebellar ataxia 17 , 2004, Movement disorders : official journal of the Movement Disorder Society.

[172]  J. Cha,et al.  Transcriptional dysregulation in Huntington’s disease , 2000, Trends in Neurosciences.

[173]  Francis O. Walker Huntington's Disease. , 2007 .

[174]  M. Pook,et al.  YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. , 2002, Human molecular genetics.

[175]  G. Sobue,et al.  17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration , 2005, Nature Medicine.

[176]  Rudolf Jaenisch,et al.  Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors , 2009, Cell.

[177]  S. Tsuji,et al.  Sharing of polyglutamine localization by the neuronal nucleus and cytoplasm in CAG‐repeat diseases , 2004, Neuropathology and applied neurobiology.

[178]  Shuan-yow Li,et al.  Identification of the spinocerebellar ataxia type 7 mutation in Taiwan: application of PCR-based Southern blot , 2000, Journal of Neurology.

[179]  M. Meyer,et al.  Molecular and clinical findings in a family with dentatorubral‐pallidoluysian atrophy , 1995, Annals of neurology.

[180]  H. Ishino,et al.  Epidemiological and genetic studies of Huntington's disease in the San-in area of Japan. , 1996, Neuroepidemiology.

[181]  Mario-Ubaldo Manto,et al.  The wide spectrum of spinocerebellar ataxias (SCAs) , 2008, The Cerebellum.

[182]  S. W. Davies,et al.  Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice , 1996, Cell.

[183]  G. Bernardi,et al.  Subclinical autonomic dysfunction in spinobulbar muscular atrophy (Kennedy disease) , 2011, Muscle & nerve.

[184]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[185]  Yen-Yu Chen,et al.  Nationwide Population-Based Epidemiologic Study of Huntington’s Disease in Taiwan , 2010, Neuroepidemiology.

[186]  J. Kassubek,et al.  Laryngospasm: An underdiagnosed symptom of X-linked spinobulbar muscular atrophy , 2005, Neurology.

[187]  A. Członkowska,et al.  Are cognitive and behavioural deficits a part of the clinical picture in Kennedy's disease? A case study , 2009, Neurocase.

[188]  Lisa Garrett,et al.  Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA , 1998, Nature Genetics.

[189]  A. Federico,et al.  Spinocerebellar Ataxia Type 2 (Sca2) Associated with Retinal Pigmentary Degeneration , 2002, European Neurology.

[190]  Kennedy's Disease Initially Manifesting as an Endocrine Disorder. , 2003, Journal of clinical neuromuscular disease.

[191]  R. Sinclair,et al.  Men with Kennedy disease have a reduced risk of androgenetic alopecia , 2007, The British journal of dermatology.

[192]  Jennifer L. Cuzzocreo,et al.  MRI Shows a Region-Specific Pattern of Atrophy in Spinocerebellar Ataxia Type 2 , 2012, The Cerebellum.

[193]  H. Zoghbi,et al.  Polyglutamine diseases: protein cleavage and aggregation , 1999, Current Opinion in Neurobiology.

[194]  U Walter,et al.  Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). , 2006, Brain : a journal of neurology.

[195]  I. Kanazawa,et al.  A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. , 1996, Human molecular genetics.

[196]  Hynek Wichterle,et al.  Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons , 2008, Science.

[197]  C. E. Pearson,et al.  Huntington's and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. , 2011, Human molecular genetics.

[198]  N. Thakor,et al.  Parkin Facilitates the Elimination of Expanded Polyglutamine Proteins and Leads to Preservation of Proteasome Function* , 2003, Journal of Biological Chemistry.

[199]  B. Schmidt,et al.  Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. , 2002, Neurology.

[200]  C. Ross,et al.  Huntington's disease: from molecular pathogenesis to clinical treatment , 2011, The Lancet Neurology.

[201]  M. Pericak-Vance,et al.  Dentatorubral-pallidoluysian atrophy and Haw River syndrome , 1994, The Lancet.

[202]  A. Vercelli,et al.  Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. , 2006, Experimental hematology.

[203]  A. Brice,et al.  Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4) , 2008, The Cerebellum.

[204]  F. Salachas,et al.  A comprehensive endocrine description of Kennedy's disease revealing androgen insensitivity linked to CAG repeat length. , 2002, The Journal of clinical endocrinology and metabolism.

[205]  A. Messer,et al.  Cystamine and intrabody co-treatment confers additional benefits in a fly model of Huntington's disease , 2010, Neurobiology of Disease.

[206]  S. Tsuji,et al.  CAG repeat disorder models and human neuropathology: similarities and differences , 2007, Acta Neuropathologica.

[207]  K. Xia,et al.  Six cases of SCA3/MJD patients that mimic hereditary spastic paraplegia in clinic , 2009, Journal of the Neurological Sciences.

[208]  K. Gwinn‐Hardy,et al.  Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease , 2004, Clinical genetics.

[209]  D. Rubinsztein,et al.  Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3 , 2009, Brain : a journal of neurology.

[210]  Monte A. Gates,et al.  Site-Specific Migration and Neuronal Differentiation of Human Neural Progenitor Cells after Transplantation in the Adult Rat Brain , 1999, The Journal of Neuroscience.

[211]  A. Wilbourn,et al.  The characteristic electrodiagnostic features of Kennedy's disease , 1997, Muscle & nerve.

[212]  Olaf Riess,et al.  Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17) , 2003, Annals of neurology.

[213]  L. Naldini,et al.  Gene therapy for a mucopolysaccharidosis type I murine model with lentiviral-IDUA vector. , 2005, Human gene therapy.

[214]  I. Kanazawa,et al.  Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6) , 1999, Journal of neurology, neurosurgery, and psychiatry.

[215]  B. Woods,et al.  Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinico-pathological entity. , 1972, Journal of the neurological sciences.

[216]  R. Rosenberg,et al.  Autosomal dominant striatonigral degeneration , 1976, Neurology.

[217]  A. Durr,et al.  Prevalence of dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. , 2003, Archives of neurology.

[218]  M Skalej,et al.  Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. , 1998, Brain : a journal of neurology.

[219]  Harry T Orr,et al.  Ataxin-1 Nuclear Localization and Aggregation Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 1998, Cell.

[220]  R. Shin,et al.  Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice , 2008, Human molecular genetics.

[221]  Howard Schulman,et al.  Global changes to the ubiquitin system in Huntington's disease , 2007, Nature.

[222]  Virginia E. Papaioannou,et al.  Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue , 1995, Nature Genetics.

[223]  S. Dunnett,et al.  Long-Term Survival of Human Central Nervous System Progenitor Cells Transplanted into a Rat Model of Parkinson's Disease , 1997, Experimental Neurology.

[224]  E. Kokmen,et al.  Incidence and prevalence of Huntington's disease in Olmsted County, Minnesota (1950 through 1989). , 1994, Archives of neurology.

[225]  Alexandra Durr,et al.  Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond , 2010, The Lancet Neurology.

[226]  M. Gunetti,et al.  Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial , 2010, Experimental Neurology.

[227]  Q. Pan,et al.  Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. , 2000, Archives of neurology.

[228]  F. Nobili,et al.  Allogeneic bone marrow transplantation (BMT) for refractory Behçet's disease with severe CNS involvement , 2006, Bone Marrow Transplantation.

[229]  G. Bates,et al.  Huntingtin aggregation and toxicity in Huntington's disease , 2003, The Lancet.

[230]  Y. Agid,et al.  Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). , 1998, Human molecular genetics.

[231]  E. Granieri,et al.  Epidemiologic approach to Huntington's disease in northern Italy (Ferrara area). , 1990, Neuroepidemiology.

[232]  R. McKay,et al.  Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease , 2002, Nature.