Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping

Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors.

[1]  W. Nauta,et al.  Efferent connections of the substantia nigra and ventral tegmental area in the rat , 1979, Brain Research.

[2]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[3]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[4]  Elyssa B. Margolis,et al.  Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Wise,et al.  Brain dopamine and reward. , 1989, Annual review of psychology.

[6]  Elyssa B. Margolis,et al.  The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? , 2006, The Journal of physiology.

[7]  D. H. Root,et al.  Single rodent mesohabenular axons release glutamate and GABA , 2014, Nature Neuroscience.

[8]  A. Bonci,et al.  Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. , 2014, Cell reports.

[9]  H. Haas,et al.  Excitation of Ventral Tegmental Area Dopaminergic and Nondopaminergic Neurons by Orexins/Hypocretins , 2003, The Journal of Neuroscience.

[10]  O. Phillipson Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat , 1979, The Journal of comparative neurology.

[11]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[12]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[13]  R. Stoop Neuromodulation by Oxytocin and Vasopressin , 2012, Neuron.

[14]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[15]  D. H. Root,et al.  Glutamate neurons within the midbrain dopamine regions , 2014, Neuroscience.

[16]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[17]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[18]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[19]  Xiang Zhou,et al.  New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking , 2013, Neuron.

[20]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[21]  S. Geisler,et al.  Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala‐recipient sectors , 2011, The Journal of comparative neurology.

[22]  K. Deisseroth,et al.  Hypothalamic Neurotensin Projections Promote Reward by Enhancing Glutamate Transmission in the VTA , 2013, The Journal of Neuroscience.

[23]  Xin Jin,et al.  Start/stop signals emerge in nigrostriatal circuits during sequence learning , 2010, Nature.

[24]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[25]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[26]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[27]  Minmin Luo,et al.  Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate , 2014, Neuron.

[28]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[29]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[30]  M. Marinelli,et al.  Heterogeneity of dopamine neuron activity across traits and states , 2014, Neuroscience.

[31]  Jennifer M. Mitchell,et al.  Midbrain Dopamine Neurons: Projection Target Determines Action Potential Duration and Dopamine D2 Receptor Inhibition , 2008, The Journal of Neuroscience.

[32]  Kevin T. Beier,et al.  Matters Arising Diversity of Transgenic Mo use Models for Selective Targeting of Midbrain Dopamine Neurons , 2015 .

[33]  Xiaojing J. Gao,et al.  Viral-genetic tracing of the input–output organization of a central noradrenaline circuit , 2015 .

[34]  Masayuki Matsumoto,et al.  Distinct Representations of Cognitive and Motivational Signals in Midbrain Dopamine Neurons , 2013, Neuron.

[35]  Michael G. Garelick,et al.  Activation of Dopamine Neurons is Critical for Aversive Conditioning and Prevention of Generalized Anxiety , 2011, Nature Neuroscience.

[36]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[37]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[38]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[39]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[40]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[41]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[42]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[43]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[44]  B. Moghaddam,et al.  The Prefrontal Cortex Regulates the Basal Release of Dopamine in the Limbic Striatum: An Effect Mediated by Ventral Tegmental Area , 1996, Journal of neurochemistry.

[45]  Adi Mizrahi,et al.  Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output , 2013, Neuron.

[46]  Liqun Luo,et al.  Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons , 2015, Neuron.

[47]  Liqun Luo,et al.  Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses , 2015, The Journal of Neuroscience.

[48]  K. Kissa,et al.  Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[50]  Elyssa B. Margolis,et al.  Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. , 2007, Annual review of neuroscience.

[51]  J. Fallon Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[53]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.