New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

Volker Hovestadt | Stefan M. Pfister | Brent A. Orr | Andrey Korshunov | David T. W. Jones | Peter Lichter | David W. Ellison | David Capper | Dominik Sturm | Marcel Kool | Daisuke Kawauchi | R. Eils | M. Wolter | G. Reifenberger | T. Mikkelsen | K. Aldape | D. Lötsch | W. Berger | M. Kool | V. Hovestadt | J. Reimand | P. Northcott | M. Schlesner | P. Lichter | S. Pfister | E. Aronica | P. Varlet | U. Schüller | P. Wesseling | I. Vajtai | R. Versteeg | S. Hofer | A. Jouvet | M. Snuderl | R. Grobholz | D. Figarella-Branger | D. Ellison | S. Puget | Chris Jones | J. Grill | P. Sluis | V. Hans | K. Pajtler | S. Brabetz | A. Korshunov | D. Capper | A. Deimling | M. Schuhmann | S. Frank | J. Koster | M. Prinz | S. Wolf | M. Sill | C. Kramm | C. Mawrin | A. Mackay | M. Remke | Michael D. Taylor | N. Jabado | S. Dahiya | W. Grajkowska | U. Toprak | T. Pietsch | A. Buccoliero | C. Hagel | F. Giangaspero | S. Rutkowski | M. Ebinger | B. Worst | I. Buchhalter | P. Johann | G. Balasubramanian | D. Sturm | E. Pfaff | M. Frühwald | K. Hoff | A. Gajjar | M. Hasselblatt | J. Phillips | I. Slavc | D. Scheie | B. Orr | T. Shalaby | M. Grotzer | K. Zitterbart | W. Scheurlen | J. Felsberg | M. Schniederjan | F. Sahm | C. Dufour | M. Karajannis | M. Santi | A. Perry | T. Milde | M. Ryzhova | M. Fouladi | C. Koelsche | J. Schittenhelm | C. Haberler | T. Meter | R. Volckmann | A. Moore | B. Mobley | R. Drissi | C. Monoranu | R. Schneppenheim | J. Gojo | J. Rössler | A. Bueren | M. Łastowska | Sariah J. Allen | Umut H. Toprak | David T.W. Jones | Sjoerd van Rijn | Diana M. Carvalho | Lynn Ann Forrester | C. Keohane | I. Fried | S. Holm | C. Herold‐Mende | Irina Leis | Cynthia Cowdrey | V. Collins

[1]  C. Nordborg,et al.  MethPed: a DNA methylation classifier tool for the identification of pediatric brain tumor subtypes , 2015, Clinical Epigenetics.

[2]  M. Fukuzawa,et al.  Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney , 2015, Nature Genetics.

[3]  Carlos Caldas,et al.  Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells , 2015, Genome research.

[4]  M. Mehta,et al.  Outcome and prognostic factors for children with supratentorial primitive neuroectodermal tumors treated with carboplatin during radiotherapy: A report from the Children's Oncology Group , 2015, Pediatric blood & cancer.

[5]  Gary D Bader,et al.  Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. , 2015, Cancer cell.

[6]  E. Abu-Isa,et al.  High-Grade Undifferentiated Small Round Cell Sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 Fusion: Emerging Entities of Soft Tissue Tumors with Unique Histopathologic Features – A Case Report and Literature Review , 2015, The American journal of case reports.

[7]  A. Judkins,et al.  Pathology and diagnosis of SMARCB1-deficient tumors. , 2014, Cancer genetics.

[8]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[9]  C. Antonescu,et al.  Distinct transcriptional signature and immunoprofile of CIC‐DUX4 fusion–positive round cell tumors compared to EWSR1‐rearranged ewing sarcomas: Further evidence toward distinct pathologic entities , 2014, Genes, chromosomes & cancer.

[10]  M. Shago,et al.  CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity , 2014, Acta Neuropathologica.

[11]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[12]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[13]  K. Hansen,et al.  Functional normalization of 450k methylation array data improves replication in large cancer studies , 2014, Genome Biology.

[14]  Li Ding,et al.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.

[15]  C. French NUT midline carcinoma , 2014, Nature Reviews Cancer.

[16]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[17]  Volker Hovestadt,et al.  Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity , 2013, Acta Neuropathologica.

[18]  T. Jacques,et al.  Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types , 2013, Acta Neuropathologica.

[19]  J. Huse,et al.  Evaluation of Histone 3 Lysine 27 Trimethylation (H3K27me3) and Enhancer of Zest 2 (EZH2) in Pediatric Glial and Glioneuronal Tumors Shows Decreased H3K27me3 in H3F3A K27M Mutant Glioblastomas , 2013, Brain pathology.

[20]  Bernat Gel,et al.  Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and genetic pathways driving tumorigenesis , 2013, Nature Genetics.

[21]  Volker Hovestadt,et al.  Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays , 2013, Acta Neuropathologica.

[22]  Sabine Mueller,et al.  The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. , 2013, Genes & development.

[23]  R. Siebert,et al.  High‐resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors , 2013, Genes, chromosomes & cancer.

[24]  David T. W. Jones,et al.  LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR) , 2012, Acta Neuropathologica.

[25]  Hideo Nakamura,et al.  Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. , 2012, The Lancet. Oncology.

[26]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[27]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[28]  Michael C. Rusch,et al.  Abstract 4869: Whole genome sequence analysis of MLL rearranged infant acute lymphoblastic leukemias reveals remarkably few somatic mutations: A Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project , 2012 .

[29]  D. Gisselsson,et al.  Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma , 2012, Oncogene.

[30]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[31]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[32]  Jaak Vilo,et al.  g:Profiler—a web server for functional interpretation of gene lists (2011 update) , 2011, Nucleic Acids Res..

[33]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[34]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[35]  P. Lichter,et al.  TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[37]  B. Scheithauer,et al.  Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes , 2010, Acta Neuropathologica.

[38]  R. Siebert,et al.  Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. , 2010, American journal of human genetics.

[39]  H. Zentgraf,et al.  Characterization of R132H Mutation‐specific IDH1 Antibody Binding in Brain Tumors , 2010, Brain pathology.

[40]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[41]  V. P. Collins,et al.  Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. , 2009, Cancer cell.

[42]  Axel Benner,et al.  Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  L. Aravind,et al.  BEN: a novel domain in chromatin factors and DNA viral proteins , 2008, Bioinform..

[44]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[45]  E. Zwarthoff,et al.  The MN1-TEL myeloid leukemia-associated fusion protein has a dominant-negative effect on RAR-RXR-mediated transcription , 2007, Oncogene.

[46]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[47]  K. Nakai,et al.  Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. , 2005, Genome research.

[48]  F. Kokocinski,et al.  Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. , 2004, Cancer research.

[49]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[50]  M. Roussel,et al.  The MN1-TEL Fusion Protein, Encoded by the Translocation (12;22)(p13;q11) in Myeloid Leukemia, Is a Transcription Factor with Transforming Activity , 2000, Molecular and Cellular Biology.

[51]  D. Brat,et al.  Pediatric Neuroblastic Brain Tumors Containing Abundant Neuropil and True Rosettes , 2000, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[52]  L. Becker,et al.  Primitive neuroectodermal tumors of the central nervous system. , 1983, Human pathology.

[53]  L. Rorke,et al.  The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. , 1983, Journal of neuropathology and experimental neurology.