Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement.

The neutron scattering structure factor S(N)(Q) for a 40 mg drop of molten alumina (Al2O3) held at 2500 K, using a laser-heated aerodynamic levitation furnace, is measured for the first time. A 1700 atom model of liquid alumina is generated from these data using the technique of empirical potential structural refinement. About 62% of the aluminum sites are 4-fold coordinated, matching the mostly triply coordinated oxygen sites, but some 24% of the aluminum sites are 5-fold coordinated. The octahedral aluminum sites found in crystalline alpha-Al2O3 occur only at the 2% level in liquid alumina.

[1]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[2]  A. Soper,et al.  Aerodynamic laser-heated contactless furnace for neutron scattering experiments at elevated temperatures , 2000 .

[3]  S. Krishnan,et al.  X-ray diffraction from levitated liquids , 2000 .

[4]  D. Price,et al.  X-ray diffraction on levitated liquids: application to liquid 80%Co–20%Pd alloy , 1999 .

[5]  Benoit Glorieux,et al.  Density of Superheated and Undercooled Liquid Alumina by a Contactless Method , 1999 .

[6]  Won-Kyu Rhim,et al.  Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation , 1999 .

[7]  P. Madden,et al.  STRUCTURE OF LIQUID AL2O3 FROM A COMPUTER SIMULATION MODEL , 1999 .

[8]  I. Egry,et al.  EXAFS studies on undercooled liquid Co80Pd20 alloy , 1999 .

[9]  L. Hennet,et al.  Contactless investigation on laser-heated oxides by synchrotron radiation , 1998 .

[10]  J. Sanz,et al.  Molecular-dynamics simulations of liquid aluminum oxide , 1998 .

[11]  P. Echegut,et al.  Development of a levitation cell for synchrotron radiation experiments at very high temperature , 1997 .

[12]  D. Price,et al.  Structure of Liquid Aluminum Oxide , 1997 .

[13]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[14]  J. Sanz,et al.  Computer Simulation of .gamma.-Al2O3 Microcrystal , 1995 .

[15]  D. Massiot,et al.  A time resolved 27Al NMR study of the cooling process of liquid alumina from 2450 °C to crystallisation , 1995 .

[16]  D. Massiot,et al.  Structure and Dynamics of CaAl2O4 from Liquid to Glass: A High-Temperature 27Al NMR Time-Resolved Study , 1995 .

[17]  Y. Waseda,et al.  Direct Determination of the Local Structure in Molten Alumina by High Temperature X-Ray Diffraction , 1995 .

[18]  S. Krishnan,et al.  Spectral Absorption Coefficient of Molten Aluminum Oxide from.0.385 to 0.780 μm , 1995 .

[19]  Dominique Massiot,et al.  SiO2-Al2O3 liquids: In-situ study by high-temperature 27Al NMR spectroscopy and molecular dynamics simulation , 1992 .

[20]  R. Hauge,et al.  Observations on the dynamics of electromagnetically levitated liquid metals and alloys at elevated temperatures , 1988 .

[21]  E. H. Trinh,et al.  Acoustic levitation methods for density measurements , 1986 .

[22]  L. Bergé,et al.  Containerless melting and solidification of materials with an aerodynamic levitation system , 1982 .

[23]  E. G. Lierke,et al.  Electrostatic and acoustic instrumentation for material science processing in space , 1980 .

[24]  W. Lu,et al.  Volume Change on Freezing of ALO , 1969 .

[25]  P. McMillan,et al.  Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3 , 1994, Nature.