Mobile Homophily and Social Location Prediction

The mobility behavior of human beings is predictable to a varying degree e.g. depending on the traits of their personality such as the trait extraversion - introversion: the mobility of introvert users may be more dominated by routines and habitual movement patterns, resulting in a more predictable mobility behavior on the basis of their own location history while, in contrast, extrovert users get about a lot and are explorative by nature, which may hamper the prediction of their mobility. However, socially more active and extrovert users meet more people and share information, experiences, believes, thoughts etc. with others. which in turn leads to a high interdependency between their mobility and social lives. Using a large LBSN dataset, his paper investigates the interdependency between human mobility and social proximity, the influence of social networks on enhancing location prediction of an individual and the transmission of social trends/influences within social networks.

[1]  E. Thompson Development and validation of an international English big-five Mini-Markers , 2008 .

[2]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[3]  Sven Kosub,et al.  Local Density , 2004, Network Analysis.

[4]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[5]  Alex Pentland,et al.  Trends Prediction Using Social Diffusion Models , 2011, SBP.

[6]  Cecilia Mascolo,et al.  Far from the eyes, close on the web: impact of geographic distance on online social interactions , 2012, WOSN '12.

[7]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[8]  Alex Pentland,et al.  Modeling Social Diffusion Phenomena using Reality Mining , 2009, AAAI Spring Symposium: Human Behavior Modeling.

[9]  Cecilia Mascolo,et al.  Exploiting Semantic Annotations for Clustering Geographic Areas and Users in Location-based Social Networks , 2011, The Social Mobile Web.

[10]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[11]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[12]  Lars Backstrom,et al.  Find me if you can: improving geographical prediction with social and spatial proximity , 2010, WWW '10.

[13]  Dan Cosley,et al.  Inferring social ties from geographic coincidences , 2010, Proceedings of the National Academy of Sciences.

[14]  Aniket Kittur,et al.  Bridging the gap between physical location and online social networks , 2010, UbiComp.

[15]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[16]  Cecilia Mascolo,et al.  Exploiting place features in link prediction on location-based social networks , 2011, KDD.

[17]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[18]  Mark S. Granovetter The Impact of Social Structure on Economic Outcomes Social Networks and Economic Outcomes: Core Principles , 2022 .

[19]  R. Riegelman Contributory cause: unnecessary and insufficient. , 1979, Postgraduate medicine.

[20]  Huiji Gao,et al.  Harnessing the Crowdsourcing Power of Social Media for Disaster Relief , 2011, IEEE Intelligent Systems.

[21]  Robin I. M. Dunbar Neocortex size as a constraint on group size in primates , 1992 .

[22]  Stuart J. Barnes,et al.  Mobile marketing: the role of permission and acceptance , 2004, Int. J. Mob. Commun..

[23]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[24]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[25]  Andrea Klug,et al.  Understanding Social Networks Theories Concepts And Findings , 2016 .

[26]  Henry A. Kautz,et al.  Finding your friends and following them to where you are , 2012, WSDM '12.

[27]  Cecilia Mascolo,et al.  The Length of Bridge Ties: Structural and Geographic Properties of Online Social Interactions , 2012, ICWSM.

[28]  W. Polonsky,et al.  The Tipping Point , 2007, The Diabetes educator.

[29]  Cecilia Mascolo,et al.  Where Online Friends Meet: Social Communities in Location-Based Networks , 2012, ICWSM.

[30]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[31]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[32]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[33]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[34]  Jiliang Tang,et al.  Mobile Location Prediction in Spatio-Temporal Context , 2012 .

[35]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[36]  A. Müller The Cement of the Universe: A Study of Causation , 1977 .

[37]  John Krumm,et al.  Learning Time-Based Presence Probabilities , 2011, Pervasive.

[38]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[39]  K. Axhausen,et al.  An agent model of social network and travel behavior interdependence , 2006 .

[40]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[41]  Dino Pedreschi,et al.  Human mobility, social ties, and link prediction , 2011, KDD.

[42]  D. Lazer,et al.  Inferring Social Network Structure using Mobile Phone Data , 2006 .

[44]  Ben Y. Zhao,et al.  Understanding latent interactions in online social networks , 2010, IMC '10.

[45]  D. Meadows-Klue The Tipping Point: How Little Things Can Make a Big Difference , 2004 .

[46]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[47]  L. Nahemow,et al.  Similarity and propinquity in friendship formation. , 1975 .

[48]  Tarek F. Abdelzaher,et al.  GreenGPS: a participatory sensing fuel-efficient maps application , 2010, MobiSys '10.

[49]  David Kotz,et al.  Identifying Unusual Days , 2011, J. Comput. Sci. Eng..

[50]  Henry A. Kautz,et al.  Intelligent Ubiquitous Computing to Support Alzheimer ’ s Patients : Enabling the Cognitively Disabled , 2002 .

[51]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[52]  Alex Pentland,et al.  Modeling Dynamical Influence in Human Interaction: Using data to make better inferences about influence within social systems , 2012, IEEE Signal Processing Magazine.

[53]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[54]  Ahmad Pesaran,et al.  Cooling and Preheating of Batteries in Hybrid Electric Vehicles , 2003 .

[55]  Karin Brundell-Freij,et al.  Optimizing route choice for lowest fuel consumption - Potential effects of a new driver support tool , 2006 .

[56]  Lorenz Fischer,et al.  Grundlagen der Sozialpsychologie , 2009 .

[57]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[58]  Huan Liu,et al.  Promoting Coordination for Disaster Relief - From Crowdsourcing to Coordination , 2011, SBP.

[59]  Alberto Cortés-Martín,et al.  Study of LZ-Based Location Prediction and Its Application to Transportation Recommender Systems , 2012, Sensors.

[60]  Cecilia Mascolo,et al.  A Tale of Many Cities: Universal Patterns in Human Urban Mobility , 2011, PloS one.

[61]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[62]  Robert J. Howlett,et al.  Intelligent GPS-Based Vehicle Control for Improved Fuel Consumption and Reduced Emissions , 2008, KES.

[63]  Katina Michael,et al.  Control, trust, privacy, and security: evaluating location-based services , 2007, IEEE Technology and Society Magazine.

[64]  Alex Pentland,et al.  Modeling the co-evolution of behaviors and social relationships using mobile phone data , 2011, MUM.

[65]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[66]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[67]  Mark S. Granovetter T H E S T R E N G T H O F WEAK TIES: A NETWORK THEORY REVISITED , 1983 .

[68]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[69]  Meng Lu,et al.  interactIVe - High precision maps for sustainable accident reduction with the enhanced Dynamic Pass Predictor , 2010 .

[70]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[71]  Cecilia Mascolo,et al.  NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems , 2011, Pervasive.

[72]  Kent Larson,et al.  Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges , 2009, Pervasive.

[73]  Hanghang Tong,et al.  Information spreading in context , 2011, WWW.

[74]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[75]  Cecilia Mascolo,et al.  An ad hoc mobility model founded on social network theory , 2004, MSWiM '04.

[76]  Patrick Barwise,et al.  Permission-based mobile advertising , 2002 .

[77]  Sandy L. Zabell,et al.  The rule of succession , 1989 .