Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated Dynamics of the N-Terminus

We present the dynamic mechanism of concerted motions in a full-length molecular model of the human dopamine transporter (hDAT), a member of the neurotransmitter/sodium symporter (NSS) family, involved in state-to-state transitions underlying function. The findings result from an analysis of unbiased atomistic molecular dynamics simulation trajectories (totaling >14 μs) of the hDAT molecule immersed in lipid membrane environments with or without phosphatidylinositol 4,5-biphosphate (PIP2) lipids. The N-terminal region of hDAT (N-term) is shown to have an essential mechanistic role in correlated rearrangements of specific structural motifs relevant to state-to-state transitions in the hDAT. The mechanism involves PIP2-mediated electrostatic interactions between the N-term and the intracellular loops of the transporter molecule. Quantitative analyses of collective motions in the trajectories reveal that these interactions correlate with the inward-opening dynamics of hDAT and are allosterically coupled to the known functional sites of the transporter. The observed large-scale motions are enabled by specific reconfiguration of the network of ionic interactions at the intracellular end of the protein. The isomerization to the inward-facing state in hDAT is accompanied by concomitant movements in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate dopamine in the primary substrate binding S1 site. The dynamic mechanism emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular loop 4 in the functionally relevant conformational transitions that are also similar to those found to underlie state-to-state transitions in the leucine transporter (LeuT), a prototypical bacterial homologue of the NSS.

[1]  Jonathan A. Javitch,et al.  Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homolog , 2011, Nature.

[2]  Jing Li,et al.  Transient formation of water-conducting states in membrane transporters , 2013, Proceedings of the National Academy of Sciences.

[3]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[4]  R. Blakely,et al.  Anomalous Dopamine Release Associated with a Human Dopamine Transporter Coding Variant , 2008, The Journal of Neuroscience.

[5]  E. Gouaux,et al.  Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context , 2012, Nature Structural &Molecular Biology.

[6]  R. Blakely,et al.  Dysregulation of Dopamine Transporters via Dopamine D2 Autoreceptors Triggers Anomalous Dopamine Efflux Associated with Attention-Deficit Hyperactivity Disorder , 2010, The Journal of Neuroscience.

[7]  A. Ruoho,et al.  N-terminus regulation of VMAT2 mediates methamphetamine-stimulated efflux , 2014, Neuroscience.

[8]  Nicholas M. Glykos,et al.  Software news and updates carma: A molecular dynamics analysis program , 2006, J. Comput. Chem..

[9]  Harini Krishnamurthy,et al.  Neurotransmitter/sodium symporter orthologue LeuT has a single high–affinity substrate site , 2010, Nature.

[10]  George R. Uhl,et al.  Dopamine Transporter Transmembrane Domain Polar Mutants: ΔG and ΔΔG Values Implicate Regions Important for Transporter Functions , 2000 .

[11]  J. Sutcliffe,et al.  Rare Autism-Associated Variants Implicate Syntaxin 1 (STX1 R26Q) Phosphorylation and the Dopamine Transporter (hDAT R51W) in Dopamine Neurotransmission and Behaviors , 2015, EBioMedicine.

[12]  Harel Weinstein,et al.  Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters , 2010, Nature Structural &Molecular Biology.

[13]  Birgit Schiøtt,et al.  Substrate binding and formation of an occluded state in the leucine transporter. , 2008, Biophysical journal.

[14]  Harel Weinstein,et al.  N-body Information Theory (NbIT) Analysis of Rigid-Body Dynamics in Intracellular Loop 2 of the 5-HT2A Receptor , 2014, IWBBIO.

[15]  S. Bröer,et al.  The solute carrier 6 family of transporters , 2012, British journal of pharmacology.

[16]  Jonathan A. Javitch,et al.  Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation , 2009, Proceedings of the National Academy of Sciences.

[17]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[18]  Ivet Bahar,et al.  Coupled global and local changes direct substrate translocation by neurotransmitter-sodium symporter ortholog LeuT. , 2013, Biophysical journal.

[19]  Eric Gouaux,et al.  X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine , 2015, Nature Structural &Molecular Biology.

[20]  Benoît Roux,et al.  Conformational dynamics of ligand-dependent alternating access in LeuT , 2014, Nature Structural &Molecular Biology.

[21]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[22]  Jonathan A. Javitch,et al.  Experimental conditions can obscure the second high-affinity site in LeuT , 2011, Nature Structural &Molecular Biology.

[23]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[24]  C. Giambalvo,et al.  Differential effects of amphetamine transport vs. dopamine reverse transport on particulate PKC activity in striatal synaptoneurosomes , 2003, Synapse.

[25]  J. Foster,et al.  Dopamine transporters are dephosphorylated in striatal homogenates and in vitro by protein phosphatase 1. , 2003, Brain research. Molecular brain research.

[26]  Jonathan A. Javitch,et al.  Mechanism of chloride interaction with neurotransmitter:sodium symporters , 2007, Nature.

[27]  Harel Weinstein,et al.  A Comprehensive Structure-Based Alignment of Prokaryotic and Eukaryotic Neurotransmitter/Na+ Symporters (NSS) Aids in the Use of the LeuT Structure to Probe NSS Structure and Function , 2006, Molecular Pharmacology.

[28]  D. Sulzer,et al.  Mechanisms of neurotransmitter release by amphetamines: A review , 2005, Progress in Neurobiology.

[29]  George Khelashvili,et al.  Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters* , 2015, The Journal of Biological Chemistry.

[30]  R. Blakely,et al.  Amphetamine Induces a Calcium/Calmodulin-Dependent Protein Kinase II-Dependent Reduction in Norepinephrine Transporter Surface Expression Linked to Changes in Syntaxin 1A/Transporter Complexes , 2007, Molecular Pharmacology.

[31]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[32]  Thorvald F. Andreassen,et al.  Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. , 2014, The Journal of clinical investigation.

[33]  Harel Weinstein,et al.  NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT , 2014, PLoS Comput. Biol..

[34]  J. Sutcliffe,et al.  SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking , 2014, Translational Psychiatry.

[35]  Therese R. Montgomery,et al.  Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate , 2013, Proceedings of the National Academy of Sciences.

[36]  L. Greene,et al.  Lipid composition of PC12 pheochromocytoma cells: characterization of globoside as a major neutral glycolipid. , 1988, Biochemistry.

[37]  R. Blakely,et al.  The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction , 2013, Pflügers Archiv - European Journal of Physiology.

[38]  H. Weinstein,et al.  Chloride binding site of neurotransmitter sodium symporters , 2013, Proceedings of the National Academy of Sciences.

[39]  Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue , 2012, EMBO reports.

[40]  C. Giambalvo Protein kinase C and dopamine transport—2. Effects of amphetamine in vitro , 1992, Neuropharmacology.

[41]  E. Gouaux,et al.  How LeuT shapes our understanding of the mechanisms of sodium‐coupled neurotransmitter transporters , 2014, The Journal of physiology.

[42]  S. Pliszka,et al.  Attention‐Deficit‐Hyperactivity Disorder: An Update , 2009, Pharmacotherapy.

[43]  Harel Weinstein,et al.  An Intracellular Interaction Network Regulates Conformational Transitions in the Dopamine Transporter* , 2008, Journal of Biological Chemistry.

[44]  Jonathan A. Javitch,et al.  Single-molecule dynamics of gating in a neurotransmitter transporter homolog , 2010, Nature.

[45]  U. Gether,et al.  SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation , 2011, Pharmacological Reviews.

[46]  H. Weinstein,et al.  The Substrate-Driven Transition to an Inward-Facing Conformation in the Functional Mechanism of the Dopamine Transporter , 2011, PloS one.

[47]  J. Linderman,et al.  Simple transporter trafficking model for amphetamine‐induced dopamine efflux , 2007, Synapse.

[48]  Benoît Roux,et al.  Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1 , 2014, Proceedings of the National Academy of Sciences.

[49]  Jing Li,et al.  Ion-releasing state of a secondary membrane transporter. , 2009, Biophysical journal.

[50]  J. Javitch,et al.  Syntaxin 1A Interaction with the Dopamine Transporter Promotes Amphetamine-Induced Dopamine Efflux , 2008, Molecular Pharmacology.

[51]  S. Robertson,et al.  A Closer Look at Amphetamine-Induced Reverse Transport and Trafficking of the Dopamine and Norepinephrine Transporters , 2009, Molecular Neurobiology.

[52]  R. Neubig,et al.  A Juxtamembrane Mutation in the N Terminus of the Dopamine Transporter Induces Preference for an Inward-Facing Conformation , 2009, Molecular Pharmacology.

[53]  J. Sutcliffe,et al.  De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder , 2013, Molecular Psychiatry.

[54]  Thorvald F. Andreassen,et al.  The Second Sodium Site in the Dopamine Transporter Controls Cation Permeation and Is Regulated by Chloride* , 2014, The Journal of Biological Chemistry.

[55]  Michael Gill,et al.  Attention Deficit/Hyperactivity Disorder-Derived Coding Variation in the Dopamine Transporter Disrupts Microdomain Targeting and Trafficking Regulation , 2012, The Journal of Neuroscience.

[56]  S Kitayama,et al.  Dopamine transporter transmembrane domain polar mutants: DeltaG and DeltaDeltaG values implicate regions important for transporter functions. , 2000, Molecular pharmacology.

[57]  I. Sora,et al.  Monoamine transporter as a target molecule for psychostimulants. , 2009, International review of neurobiology.

[58]  Oliver F. Lange,et al.  Generalized correlation for biomolecular dynamics , 2005, Proteins.

[59]  B. Schiøtt,et al.  Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations , 2013, PloS one.

[60]  Gerhard F. Ecker,et al.  Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model , 2013, PLoS Comput. Biol..

[61]  Andrej Sali,et al.  Comparative Protein Structure Modeling Using MODELLER , 2014, Current protocols in bioinformatics.

[62]  M. Quick,et al.  Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A , 2000, Nature Neuroscience.

[63]  J. Foster,et al.  Dopamine Transporters Are Phosphorylated on N-terminal Serines in Rat Striatum* , 2002, The Journal of Biological Chemistry.

[64]  Alexander Kraskov,et al.  Published under the scientific responsability of the EUROPEAN PHYSICAL SOCIETY Incorporating , 2002 .

[65]  Eric Gouaux,et al.  Antidepressant binding site in a bacterial homologue of neurotransmitter transporters , 2007, Nature.

[66]  R. Blakely,et al.  The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants , 2014, Proceedings of the National Academy of Sciences.

[67]  J. Foster,et al.  SLC6 transporters: structure, function, regulation, disease association and therapeutics. , 2013, Molecular aspects of medicine.

[68]  H. Weinstein,et al.  PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein , 2014, Nature chemical biology.

[69]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[70]  E. Puffenberger,et al.  Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood , 2014, Brain : a journal of neurology.

[71]  Eric Gouaux,et al.  A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation , 2008, Science.

[72]  C. Graindorge [Attention deficit with hyperactivity]. , 2006, Bulletin de l'Academie nationale de medecine.

[73]  H. Weinstein,et al.  Computational modeling of the N‐terminus of the human dopamine transporter and its interaction with PIP2‐containing membranes , 2015, Proteins.

[74]  J. Rothman,et al.  Erratum: A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[75]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[76]  Eric Gouaux,et al.  X-ray structure of dopamine transporter elucidates antidepressant mechanism , 2013, Nature.

[77]  Jonathan A Javitch,et al.  Amphetamine induces dopamine efflux through a dopamine transporter channel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Sitte,et al.  Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport , 2006, Neuron.

[79]  H. Weinstein,et al.  The binding sites for cocaine and dopamine in the dopamine transporter overlap , 2008, Nature Neuroscience.

[80]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[81]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[82]  Emad Tajkhorshid,et al.  Modeling and Dynamics of the Inward-Facing State of a Na+/Cl− Dependent Neurotransmitter Transporter Homologue , 2010, PLoS Comput. Biol..

[83]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[84]  Eric Gouaux,et al.  Insights into transport mechanism from LeuT engineered to transport tryptophan , 2012, The EMBO journal.

[85]  H. Larsson,et al.  Neurotransmitter transporters: structure meets function. , 2013, Structure.

[86]  J. Javitch,et al.  A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters , 2014, Nature Structural &Molecular Biology.

[87]  E. Zomot,et al.  Sodium-coupled neurotransmitter transporters. , 2008, Chemical reviews.

[88]  M. Mezei,et al.  A molecular dynamics investigation of lipid bilayer perturbation by PIP2. , 2010, Biophysical journal.

[89]  Harel Weinstein,et al.  The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. , 2008, Molecular cell.

[90]  Ivet Bahar,et al.  Complete Mapping of Substrate Translocation Highlights the Role of LeuT N-terminal Segment in Regulating Transport Cycle , 2014, PLoS Comput. Biol..

[91]  H. Steinhoff,et al.  Extracellular loop 4 of the proline transporter PutP controls the periplasmic entrance to ligand binding sites. , 2014, Structure.

[92]  Intracellular Domains of a Rat Brain GABA Transporter That Govern Transport , 2004, The Journal of Neuroscience.

[93]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[94]  J. Javitch,et al.  N-Terminal Phosphorylation of the Dopamine Transporter Is Required for Amphetamine-Induced Efflux , 2004, PLoS biology.

[95]  Harini Krishnamurthy,et al.  X-ray structures of LeuT in substrate-free outward-open and apo inward-open states , 2012, Nature.

[96]  Ivet Bahar,et al.  Microseconds Simulations Reveal a New Sodium-binding Site and the Mechanism of Sodium-coupled Substrate Uptake by LeuT* , 2014, The Journal of Biological Chemistry.

[97]  Harel Weinstein,et al.  Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT. , 2012, Biophysical journal.

[98]  M. Reith,et al.  Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6 , 2004, Pflügers Archiv.

[99]  B. Gorentla,et al.  Regulation of the dopamine transporter by phosphorylation. , 2006, Handbook of experimental pharmacology.

[100]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[101]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..