A cohesionless micromechanical model for gas hydrate-bearing sediments

[1]  S. Pinkert The lack of true cohesion in hydrate-bearing sands , 2017 .

[2]  S. Pinkert Rowe’s Stress-Dilatancy Theory for Hydrate-Bearing Sand , 2017 .

[3]  K. Soga,et al.  Discrete element modelling of methane hydrate soil sediments using elongated soil particles , 2016 .

[4]  Jianfeng Wang,et al.  DEM Analysis of Geomechanical Properties of Cemented Methane Hydrate–Bearing Soils at Different Temperatures and Pressures , 2016 .

[5]  M. Jiang,et al.  DEM simulation of bonded granular material. Part II: Extension to grain-coating type methane hydrate bearing sand , 2016 .

[6]  Yasuhiro Yamada,et al.  Gas-hydrate-bearing sand reservoir systems in the offshore of India: Results of the India National Gas Hydrate Program Expedition 02 , 2016 .

[7]  Rainer Helmig,et al.  Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs , 2015, Computational Geosciences.

[8]  F. Enzmann,et al.  Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X‐ray computed tomographic microscopy , 2015 .

[9]  F. Liu,et al.  A bond contact model for methane hydrate‐bearing sediments with interparticle cementation , 2014 .

[10]  Pushpendra Kumar,et al.  Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01 , 2014 .

[11]  S. Pinkert,et al.  Prediction of the mechanical response of hydrate‐bearing sands , 2014 .

[12]  T. Kanno,et al.  Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough , 2014 .

[13]  J. Howard,et al.  ConocoPhillips Gas Hydrate Production Test , 2013 .

[14]  Yukio Nakata,et al.  Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed , 2013 .

[15]  Kenichi Soga,et al.  Explicitly Coupled Thermal Flow Mechanical Formulation for Gas-Hydrate Sediments , 2013 .

[16]  Kenichi Soga,et al.  Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations , 2012 .

[17]  Kenichi Soga,et al.  Critical state soil constitutive model for methane hydrate soil , 2012 .

[18]  K. Wallmann,et al.  Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation , 2011 .

[19]  Kenichi Soga,et al.  Coupled deformation–flow analysis for methane hydrate extraction , 2010 .

[20]  K. Soga,et al.  Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution , 2010 .

[21]  Sayuri Kimoto,et al.  A chemo–thermo–mechanically coupled analysis of ground deformation induced by gas hydrate dissociation , 2010 .

[22]  T. Ebinuma,et al.  Analysis of Production Data for 2007/2008 Mallik Gas Hydrate Production Tests in Canada , 2010 .

[23]  J. Wright,et al.  GEOLOGIC AND POROUS MEDIA FACTORS AFFECTING THE 2007 PRODUCTION RESPONSE CHARACTERISTICS OF THE JOGMEC/NRCAN/AURORA MALLIK GAS HYDRATE PRODUCTION RESEARCH WELL , 2008 .

[24]  Jonny Rutqvist,et al.  Coupled Hydrologic, Thermal and Geomechanical Analysis of Well Bore Stability in Hydrate-Bearing Sediments , 2008 .

[25]  R. Freij-Ayoub,et al.  A wellbore stability model for hydrate bearing sediments , 2007 .

[26]  Kazuo Aoki,et al.  Effects of Methane Hydrate Formation On Shear Strength of Synthetic Methane Hydrate Sediments , 2005 .

[27]  George J. Moridis,et al.  Numerical Studies of Gas Production From Methane Hydrates , 2003 .

[28]  S. Sasaki,et al.  Elasticity of single-crystal methane hydrate at high pressure , 2002 .

[29]  S. Baars Discrete element modelling of granular materials , 1996 .

[30]  P. A. Cundall,et al.  Computer Simulations of Dense Sphere Assemblies , 1988 .

[31]  P. W. Rowe The stress-dilatancy relation for static equilibrium of an assembly of particles in contact , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.