Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells.

A retinal ganglion cell receptive field is made up of an excitatory center and an inhibitory surround. The surround has two components: one driven by horizontal cells at the first synaptic layer and one driven by amacrine cells at the second synaptic layer. Here we characterized how amacrine cells inhibit the center response of on- and off-center Y-type ganglion cells in the in vitro guinea pig retina. A high spatial frequency grating (4-5 cyc/mm), beyond the spatial resolution of horizontal cells, drifted in the ganglion cell receptive field periphery to stimulate amacrine cells. The peripheral grating suppressed the ganglion cell spiking response to a central spot. Suppression of spiking was strongest and observed most consistently in off cells. In intracellular recordings, the grating suppressed the subthreshold membrane potential in two ways: a reduced slope (gain) of the stimulus-response curve by approximately 20-30% and, in off cells, a tonic approximately 1-mV hyperpolarization. In voltage clamp, the grating increased an inhibitory conductance in all cells and simultaneously decreased an excitatory conductance in off cells. To determine whether center response inhibition was presynaptic or postsynaptic (shunting), we measured center response gain under voltage-clamp and current-clamp conditions. Under both conditions, the peripheral grating reduced center response gain similarly. This result suggests that reduced gain in the ganglion cell subthreshold center response reflects inhibition of presynaptic bipolar terminals. Thus amacrine cells suppressed ganglion cell center response gain primarily by inhibiting bipolar cell glutamate release.

[1]  D. Dacey,et al.  The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway , 2004, The Journal of Neuroscience.

[2]  J. B. Demb,et al.  Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.

[3]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[4]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[5]  Synaptic mechanisms shaping the light-response in retinal ganglion cells. , 2001, Progress in brain research.

[6]  B. Völgyi,et al.  Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina , 2001, The Journal of comparative neurology.

[7]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[8]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[9]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[10]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[11]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[12]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[13]  J. Caldwell,et al.  New properties of rabbit retinal ganglion cells. , 1978, The Journal of physiology.

[14]  M. Lankheet,et al.  Responses of cat horizontal cells to sinusoidal gratings , 1992, Vision Research.

[15]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[16]  RETINA , 1965 .

[17]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[18]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[19]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[20]  C. Enroth-Cugell,et al.  Effects of Remote Stimulation on the Mean Firing Rate of Cat Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[21]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[22]  Peter D Lukasiewicz,et al.  Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells. , 2003, Journal of neurophysiology.

[23]  B. Borghuis,et al.  Cellular Basis for Contrast Gain Control over the Receptive Field Center of Mammalian Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[24]  D. Dacey,et al.  Axon‐bearing amacrine cells of the macaque monkey retina , 1989, The Journal of comparative neurology.

[25]  L. Peichl,et al.  Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Chris J. Tinsley,et al.  Spatial distribution of suppressive signals outside the classical receptive field in lateral geniculate nucleus. , 2005, Journal of neurophysiology.

[27]  B. Boycott,et al.  Neurofibrillar long-range amacrine cells in mammalian retinae , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  H M Sakai,et al.  Signal transmission in the catfish retina. IV. Transmission to ganglion cells. , 1987, Journal of neurophysiology.

[29]  L N Thibos,et al.  The properties of surround antagonism elicited by spinning windmill patterns in the mudpuppy retina. , 1978, The Journal of physiology.

[30]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[31]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[32]  C. Enroth-Cugell,et al.  The receptive‐field spatial structure of cat retinal Y cells. , 1987, The Journal of physiology.

[33]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[34]  D. Copenhagen,et al.  Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[35]  B. Robertson Characteristics of GABA‐activated chloride channels in mammalian dorsal root ganglion neurones. , 1989, The Journal of physiology.

[36]  T. Albright,et al.  Contextual influences on visual processing. , 2002, Annual review of neuroscience.

[37]  Ji-Jie Pang,et al.  Light-Evoked Excitatory and Inhibitory Synaptic Inputs to ON and OFF α Ganglion Cells in the Mouse Retina , 2003, The Journal of Neuroscience.

[38]  B. Sakmann,et al.  Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. , 1987, The Journal of physiology.

[39]  E. A. Schwartz,et al.  Organization of on‐off cells in the retina of the turtle , 1973, The Journal of physiology.

[40]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[41]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[42]  Saskia E. J. de Vries,et al.  Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On , 2007, PLoS biology.

[43]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[44]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[45]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[46]  R. Shapley,et al.  Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. , 1979, The Journal of physiology.

[47]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[48]  F S Werblin,et al.  Spike initiation and propagation in wide field transient amacrine cells of the salamander retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[50]  C. Enroth-Cugell,et al.  Suppression of cat retinal ganglion cell responses by moving patterns. , 1980, The Journal of physiology.

[51]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields. , 1978, The Journal of physiology.

[52]  W. Levick,et al.  Brisk and sluggish concentrically organized ganglion cells in the cat's retina , 1974, The Journal of physiology.

[53]  F S Werblin,et al.  Lateral Interactions at Inner Plexiform Layer of Vertebrate Retina: Antagonistic Responses to Change , 1972, Science.

[54]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[55]  B. O'Brien,et al.  Intrinsic physiological properties of cat retinal ganglion cells , 2002, The Journal of physiology.

[56]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[57]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[58]  P. Lukasiewicz,et al.  Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output , 2006, Neuron.

[59]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[60]  Barry B. Lee,et al.  Suppressive Surrounds and Contrast Gain in Magnocellular-Pathway Retinal Ganglion Cells of Macaque , 2006, The Journal of Neuroscience.

[61]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[62]  S. Bloomfield,et al.  A flattened retina-eyecup preparation suitable for electrophysiological studies of neurons visualized with trans-scleral infrared illumination , 2000, Journal of Neuroscience Methods.

[63]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[64]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[65]  B. Boycott,et al.  Alpha ganglion cells in mammalian retinae , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[66]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[67]  R. Weiler,et al.  The modulation of intercellular coupling in the retina. , 1998, Seminars in cell & developmental biology.

[68]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[69]  Tai Sing Lee,et al.  Contextual Influences in Visual Processing , 2008 .

[70]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[71]  Peter Sterling,et al.  Contrast threshold of a brisk-transient ganglion cell in vitro. , 2003, Journal of neurophysiology.

[72]  E. V. Famiglietti,et al.  Polyaxonal amacrine cells of rabbit retina: Morphology and stratification of PA1 cells , 1992, The Journal of comparative neurology.

[73]  R. Linsenmeier,et al.  Effects of picrotoxin and strychnine on non‐linear responses of Y‐type cat retinal ganglion cells. , 1982, The Journal of physiology.

[74]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[75]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[76]  P. Sterling,et al.  Chromatic Properties of Horizontal and Ganglion Cell Responses Follow a Dual Gradient in Cone Opsin Expression , 2006, The Journal of Neuroscience.

[77]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[78]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[79]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[80]  G Buchsbaum,et al.  How retinal microcircuits scale for ganglion cells of different size , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  D. Dacey,et al.  Physiology of the A1 amacrine: A spiking, axon-bearing interneuron of the macaque monkey retina , 1997, Visual Neuroscience.

[82]  P. Lukasiewicz,et al.  Action Potentials Are Required for the Lateral Transmission of Glycinergic Transient Inhibition in the Amphibian Retina , 1998, The Journal of Neuroscience.

[83]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[84]  Fred Rieke,et al.  Network Variability Limits Stimulus-Evoked Spike Timing Precision in Retinal Ganglion Cells , 2006, Neuron.

[85]  H. Sakai,et al.  Contrast gain control in the lower vertebrate retinas [published erratum appears in J Gen Physiol 1995 Aug;106(2):following 388] , 1995, The Journal of general physiology.

[86]  Bin Lin,et al.  Populations of wide‐field amacrine cells in the mouse retina , 2006, The Journal of comparative neurology.

[87]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[88]  P. Lennie,et al.  Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque , 2005, The Journal of Neuroscience.

[89]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[90]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.