A Bayesian model for joint segmentation and registration

A statistical model is presented that combines the registration of an atlas with the segmentation of magnetic resonance images. We use an Expectation Maximization-based algorithm to find a solution within the model, which simultaneously estimates image artifacts, anatomical labelmaps, and a structure-dependent hierarchical mapping from the atlas to the image space. The algorithm produces segmentations for brain tissues as well as their substructures. We demonstrate the approach on a set of 22 magnetic resonance images. On this set of images, the new approach performs significantly better than similar methods which sequentially apply registration and segmentation.

[1]  W. Eric L. Grimson,et al.  Incorporating Non-rigid Registration into Expectation Maximization Algorithm to Segment MR Images , 2002, MICCAI.

[2]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[3]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[4]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[5]  Alan C. Evans,et al.  A fully automatic and robust brain MRI tissue classification method , 2003, Medical Image Anal..

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[8]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[9]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[10]  W. Eric L. Grimson,et al.  Anatomical guided segmentation with non-stationary tissue class distributions in an expectation-maximization framework , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[11]  Michael E. Leventon,et al.  Statistical models in medical image analysis , 2000 .

[12]  Patrick Dupont,et al.  Effects of Anatomical Asymmetry in Spatial Priors on Model-Based Segmentation of the Brain MRI: A Validation Study , 2004, MICCAI.

[13]  Edgar Arce Santana,et al.  Hidden Markov Measure Field Models for Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[17]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[18]  W. Eric L. Grimson,et al.  Coupling Statistical Segmentation and PCA Shape Modeling , 2004, MICCAI.

[19]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[20]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[21]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[22]  Ron Kikinis,et al.  A Binary Entropy Measure to Assess Nonrigid Registration Algorithms , 2001, MICCAI.

[23]  A. Toga,et al.  High-Resolution Random Mesh Algorithms for Creating a Probabilistic 3D Surface Atlas of the Human Brain , 1996, NeuroImage.

[24]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[25]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[26]  Tina Kapur,et al.  Model based three dimensional medical image segmentation , 1999 .

[27]  J. Alison Noble,et al.  MAP MRF Joint Segmentation and Registration , 2002, MICCAI.

[28]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[29]  Michael Brady,et al.  Simultaneous Segmentation and Registration of Contrast-Enhanced Breast MRI , 2005, IPMI.

[30]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.