Real-time fuzzy system identification using uncertainty bounds

In this paper, a novel embedded real-time interval type-2 fuzzy neural network (FNN) system identification is presented using intelligent algorithms, back propagation (BP) algorithms. Interval type-2 FNN is introduced to handle uncertainties which arise from the noisy training data, noisy measurements used to activate the fuzzy logic system (FLS) and linguistic uncertainties. In order to overcome the iterative type-reduction overhead, the intelligent algorithms are proposed to learn the parameters of interval type-2 FLS using uncertainty bounds, inner- and outer-bound sets, which provide estimates of the uncertainties contained in the output of an interval type-2 FLS without having to perform the costly computations of type-reduction. Two nonlinear systems, namely, Duffing forced oscillation system and inverted pendulum system, are fully illustrated to be identified and simulation results show that not only similar identification performance to one that use type-reduction can be achieved but also significantly faster real-time identification can be performed.

[1]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[2]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[3]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[4]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[5]  Tsung-Chih Lin ANALOG CIRCUIT FAULT DIAGNOSIS UNDER PARAMETER VARIATIONS BASED ON TYPE-2 FUZZY LOGIC SYSTEMS , 2010 .

[6]  Tsung-Chih Lin,et al.  Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems , 2009, Eng. Appl. Artif. Intell..

[7]  Tsung-Chih Lin,et al.  System Identification Based on Dynamical Training for Recurrent Interval Type-2 Fuzzy Neural Network , 2011, Int. J. Fuzzy Syst. Appl..

[8]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[9]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[10]  J. Mendel,et al.  Parametric design of stable type-2 TSK fuzzy systems , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[11]  Adel M. Alimi,et al.  Motion Planning in Dynamic and Unknown Environment Using an Interval Type-2 TSK Fuzzy Logic Controller , 2007, 2007 IEEE International Fuzzy Systems Conference.

[12]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[13]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[15]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[16]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[17]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[19]  Tsung-Chih Lin,et al.  Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems , 2002, IEEE Trans. Fuzzy Syst..

[20]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[21]  Hani Hagras,et al.  Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[22]  Tsung-Chih Lin,et al.  ROBUST ADAPTIVE TRACKING CONTROL OF MULTIVARIABLE NONLINEAR SYSTEMS BASED ON INTERVAL TYPE-2 FUZZY APPROACH , 2010 .

[23]  Tsung-Chih Lin,et al.  Observer-based robust adaptive interval type-2 fuzzy tracking control of multivariable nonlinear systems , 2010, Eng. Appl. Artif. Intell..

[24]  Chin-Teng Lin,et al.  Neural-Network-Based Fuzzy Logic Control and Decision System , 1991, IEEE Trans. Computers.

[25]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[26]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Oscar Castillo,et al.  A New Method for Adaptive Control of Non-Linear Plants Using Type-2 Fuzzy Logic and Neural Networks , 2002, International Journal of General Systems.