Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification)

MicroRNAs (miRNAs) control gene expression at the post-transcriptional level. However, the identification of miRNAs regulating the fate of a specific messenger RNA remains limited due to the imperfect complementarity of miRNAs and targeted transcripts. Here, we describe miTRAP (miRNA trapping by RNA in vitro affinity purification), an advanced protocol of previously reported MS2-tethering approaches. MiTRAP allows the rapid identification of miRNAs targeting an in vitro transcribed RNA in cell lysates. Selective co-purification of regulatory miRNAs was confirmed for the MYC- as well as ZEB2-3′UTR, two well-established miRNA targets in vivo. Combined with miRNA-sequencing, miTRAP identified in addition to miRNAs reported to control MYC expression, 18 novel candidates including not in silico predictable miRNAs. The evaluation of 10 novel candidate miRNAs confirmed 3′UTR-dependent regulation of MYC expression as well as putative non-canonical targeting sites for the not in silico predictable candidates. In conclusion, miTRAP provides a rapid, cost-effective and easy-to-handle protocol allowing the identification of regulatory miRNAs for RNAs of choice in a cellular context of interest. Most notably, miTRAP not only identifies in silico predictable but also unpredictable miRNAs regulating the expression of a specific target RNA.

[1]  L. M. Facchini,et al.  The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter , 1997, Molecular and cellular biology.

[2]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[3]  Steven P. Gygi,et al.  Comprehensive proteomic analysis of the human spliceosome , 2002, Nature.

[4]  R. Reed,et al.  Purification of Functional RNA‐Protein Complexes using MS2‐MBP , 2003, Current protocols in molecular biology.

[5]  M. Wiznerowicz,et al.  Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-Inducible RNA Interference , 2003, Journal of Virology.

[6]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[7]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[8]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[9]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[10]  Malgorzata Schelder,et al.  Identification of 40LoVe, a Xenopus hnRNP D family protein involved in localizing a TGF-beta-related mRNA during oogenesis. , 2005, Developmental cell.

[11]  F. Slack,et al.  Reciprocal expression of lin‐41 and the microRNAs let‐7 and mir‐125 during mouse embryogenesis , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[12]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[13]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[14]  K. Morimura,et al.  Peroxisome Proliferator-Activated Receptor α Regulates a MicroRNA-Mediated Signaling Cascade Responsible for Hepatocellular Proliferation , 2007, Molecular and Cellular Biology.

[15]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[16]  A. Lund,et al.  Isolation of microRNA targets using biotinylated synthetic microRNAs. , 2007, Methods.

[17]  Patricia Soteropoulos,et al.  MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. , 2007, Cancer research.

[18]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[19]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[20]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[21]  L. Penn,et al.  Reflecting on 25 years with MYC , 2008, Nature Reviews Cancer.

[22]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[23]  M. Robinson,et al.  Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.

[24]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[25]  R. Eisenman,et al.  Myc's broad reach. , 2008, Genes & development.

[26]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[27]  Yi Wen Kong,et al.  The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene , 2008, Proceedings of the National Academy of Sciences.

[28]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[29]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[30]  David G Hendrickson,et al.  Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA , 2009, PLoS biology.

[31]  E. Wahle,et al.  Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. , 2008, RNA.

[32]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[33]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[34]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[35]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[36]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[37]  H. Iba,et al.  Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells , 2009, Nucleic acids research.

[38]  Hailong Wu,et al.  p53 represses c-Myc through induction of the tumor suppressor miR-145 , 2009, Proceedings of the National Academy of Sciences.

[39]  Robert Gentleman,et al.  ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data , 2009, Bioinform..

[40]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[41]  M. Lederer,et al.  Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. , 2010, RNA.

[42]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[43]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[44]  E. Izaurralde,et al.  Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu , 2010, Nature Reviews Molecular Cell Biology.

[45]  M. Gaestel,et al.  p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication , 2010, Proceedings of the National Academy of Sciences.

[46]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[47]  E. Olson,et al.  Affinity purification of microRNA-133a with the cardiac transcription factor, Hand2 , 2010, Proceedings of the National Academy of Sciences.

[48]  G. Mufti,et al.  A Functional Assay for MicroRNA Target Identification and Validation , 2010 .

[49]  H. Dralle,et al.  Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas , 2010, Oncogene.

[50]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[51]  Eugene Berezikov,et al.  MicroRNAs , 2014 .

[52]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[53]  R. Agami,et al.  MicroRNA regulation by RNA-binding proteins and its implications for cancer , 2011, Nature Reviews Cancer.

[54]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[55]  Hua Lu,et al.  Autoregulatory Suppression of c-Myc by miR-185-3p* , 2011, The Journal of Biological Chemistry.

[56]  A. Rosenwald,et al.  The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. , 2011, Molecular cell.

[57]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[58]  Javier Santos,et al.  Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. , 2011, Blood.

[59]  Nikolaus Rajewsky,et al.  The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs , 2011, PloS one.

[60]  Rongkun Shen,et al.  Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach , 2012, Proceedings of the National Academy of Sciences.

[61]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[62]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[63]  W. Park,et al.  A statin-regulated microRNA represses human c-Myc expression and function , 2012, EMBO molecular medicine.

[64]  Myriam Gorospe,et al.  MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. , 2012, Methods.

[65]  J. Steitz,et al.  Association of Argonaute proteins and microRNAs can occur after cell lysis. , 2012, RNA.

[66]  Joyce A. Wilson,et al.  miR‐122 Promotion of the hepatitis C virus life cycle: sound in the silence , 2013, Wiley interdisciplinary reviews. RNA.

[67]  I. Oglesby,et al.  Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique , 2013, Nucleic acids research.

[68]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.