Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem
暂无分享,去创建一个
Shaohan Hu | Shouvanik Chakrabarti | B. Neyenhuis | Marco Pistoia | Jeffrey Larson | Y. Alexeev | Ruslan Shaydulin | J. Gaebler | D. Gresh | T. Gatterman | K. Gilmore | S. Moses | Changhao Li | J. Dreiling | Romina Yalovetzky | Pierre Minssen | Dylan Herman | Yue Sun | Peter E. Siegfried | Nathan H. Hewitt | J. Johansen | N. Kumar | J. Gerber | M. Matheny | Tanner Mengle | Chandler V. Horst | Danylo Lykov | M. DeCross | Michael Mills
[1] Phillip C. Lotshaw,et al. Approximate Boltzmann distributions in quantum approximate optimization , 2022, Physical Review A.
[2] Florentino Fernández Riverola,et al. A hybrid artificial intelligence model for river flow forecasting , 2013, Appl. Soft Comput..
[3] Manuel Laguna,et al. Tabu Search , 1997 .
[4] Ulla Li Zweifel. Disclaimer , 1958, Neuroscience Letters.