Heralded quantum controlled- phase gates with dissipative dynamics in macroscopically distant resonators

Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015)]. This protocol is based on a single four-level atom (a heralding quartit) and $N$ three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-$Z$ gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of $N$ qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

[1]  J. Feist,et al.  Coupling a Single Trapped Atom to a Nanoscale Optical Cavity , 2013, Science.

[2]  John M. Martinis,et al.  Superconducting phase qubits , 2009, Quantum Inf. Process..

[3]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[4]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[5]  A. Sørensen,et al.  Steady-state entanglement of two superconducting qubits engineered by dissipation , 2013, 1304.0746.

[6]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[7]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[8]  Teleportation with insurance of an entangled atomic state via cavity decay , 2004, quant-ph/0407007.

[9]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[10]  Franco Nori,et al.  Controllable scattering of a single photon inside a one-dimensional resonator waveguide. , 2008, Physical review letters.

[11]  J. Upham,et al.  Strong coupling between distant photonic nanocavities and its dynamic control , 2011, Nature Photonics.

[12]  M. Koashi,et al.  Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems , 2002, quant-ph/0205030.

[13]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[14]  F. Nori,et al.  Controllable single-photon transport between remote coupled-cavity arrays , 2015, 1512.06487.

[15]  Masaya Notomi,et al.  Large-scale arrays of ultrahigh-Q coupled nanocavities , 2008 .

[16]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[17]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[18]  M. Weidemüller,et al.  Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains. , 2015, Physical review letters.

[19]  Franco Nori,et al.  Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. , 2005, Physical review letters.

[20]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[21]  Franco Nori,et al.  Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences , 2013, 1310.7286.

[22]  Franco Nori,et al.  Quantum Football , 2009, Science.

[23]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[24]  S. Wüster,et al.  Quantum simulation of energy transport with embedded Rydberg aggregates. , 2015, Physical review letters.

[25]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[26]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[27]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[28]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[31]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[32]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[33]  P. Knight,et al.  Proposal for teleportation of an atomic state via cavity decay , 1999, quant-ph/9908004.

[34]  I. Sinayskiy,et al.  Dissipative preparation of large W states in Optical Cavities , 2013, 1402.0522.

[35]  P. Zoller,et al.  Non-Markovian dynamics in chiral quantum networks with spins and photons , 2016, 1602.00926.

[36]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[37]  E. Solano,et al.  Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED , 2008, 0805.3294.

[38]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[39]  A. Sørensen,et al.  Driving two atoms in an optical cavity into an entangled steady state using engineered decay , 2011, 1110.1024.

[40]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[41]  Measurement induced entanglement and quantum computation with atoms in optical cavities. , 2003, Physical review letters.

[42]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[43]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[44]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[45]  X. Shao,et al.  Scheme for entanglement generation in an atom-cavity system via dissipation , 2014 .

[46]  Shi-Biao Zheng,et al.  Steady-State Entanglement for Distant Atoms by Dissipation in Coupled Cavities , 2011 .

[47]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[48]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[49]  George C. Knee,et al.  A hybrid-systems approach to spin squeezing using a highly dissipative ancillary system , 2015, 1512.03436.

[50]  Florentin Reiter,et al.  Effective operator formalism for open quantum systems , 2011, 1112.2806.

[51]  J. Borregaard,et al.  Heralded Quantum Gates with Integrated Error Detection in Optical Cavities , 2015, 1501.00956.

[52]  Erik Lucero,et al.  Emulation of a Quantum Spin with a Superconducting Phase Qudit , 2009, Science.

[53]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[54]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[55]  H. Carmichael An open systems approach to quantum optics , 1993 .

[56]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[57]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[58]  Yang Yu,et al.  Energy relaxation time between macroscopic quantum levels in a superconducting persistent-current qubit. , 2004, Physical review letters.

[59]  Franco Nori,et al.  Quantum supercavity with atomic mirrors , 2008, 0809.4063.

[60]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[61]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[62]  Gregory S. Bentsen,et al.  Approaching the Heisenberg Limit without Single-Particle Detection. , 2015, Physical review letters.

[63]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[64]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[65]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[66]  Hideaki Takayanagi,et al.  Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED , 2009 .