Development of the Optimization Model for Improving Safety at Rail Crossings in Florida

Co-Principal Investigator: Ren Moses, Ph.D., P.E. Professor Department of Civil & Environmental Engineering Florida A&M University-Florida State University Phone: +1(850) 410-6191 E-mail: moses@eng.famu.fsu.edu Co-Principal Investigator: John Sobanjo, Ph.D., P.E. Professor Department of Civil & Environmental Engineering Florida A&M University-Florida State University Phone: +1(850) 410-6153 E-mail: sobanjo@eng.famu.fsu.edu

[1]  Maxim A. Dulebenets,et al.  A Diploid Evolutionary Algorithm for Sustainable Truck Scheduling at a Cross-Docking Facility , 2018 .

[2]  Maxim A. Dulebenets,et al.  A Self-Adaptive Evolutionary Algorithm for the Berth Scheduling Problem: Towards Efficient Parameter Control , 2018, Algorithms.

[3]  Mohammad Sohel Rahman,et al.  Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls , 2006, Comput. Oper. Res..

[4]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[5]  Walter R. Boot,et al.  Exact and heuristic solution algorithms for efficient emergency evacuation in areas with vulnerable populations , 2019, International Journal of Disaster Risk Reduction.

[6]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[7]  G. B. Mathews On the Partition of Numbers , 1896 .

[8]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[9]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[10]  Carsten Peterson,et al.  Neural Networks for Optimization Problems with Inequality Constraints: The Knapsack Problem , 1993, Neural Computation.

[11]  Y. Toyoda A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .

[12]  Maxim A. Dulebenets,et al.  A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility , 2019, International Journal of Production Economics.

[13]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[14]  Maxim A. Dulebenets,et al.  A Comprehensive Evaluation of Weak and Strong Mutation Mechanisms in Evolutionary Algorithms for Truck Scheduling at Cross-Docking Terminals , 2018, IEEE Access.

[15]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[16]  Gries,et al.  The chi-square test for independence , 2022 .

[17]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[18]  Haitao Yu,et al.  Economic Analysis Framework for Freight Transportation Based on Florida Statewide Multi-Modal Freight Model , 2018 .

[19]  Maxim A. Dulebenets,et al.  Application of Evolutionary Computation for Berth Scheduling at Marine Container Terminals: Parameter Tuning Versus Parameter Control , 2018, IEEE Transactions on Intelligent Transportation Systems.

[20]  T. Ibaraki Enumerative approaches to combinatorial optimization - part I , 1988 .

[21]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[23]  Demin Xiong,et al.  Integrating Data and Models for Analysis of Freight Movements on Multimodal Transportation Systems for Florida , 2007 .

[24]  STEPHEN COOK,et al.  The P versus NP Problem , 2010, ArXiv.

[25]  Roberto Battiti,et al.  Parallel biased search for combinatorial optimization: genetic algorithms and TABU , 1992, Microprocess. Microsystems.

[26]  Ren Moses,et al.  Minimizing Carbon Dioxide Emissions Due to Container Handling at Marine Container Terminals via Hybrid Evolutionary Algorithms , 2017, IEEE Access.

[27]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[28]  G. Nemhauser,et al.  Discrete Dynamic Programming and Capital Allocation , 1969 .

[29]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[30]  P. Bárcia,et al.  A revised bound improvement sequence algorithm , 1988 .

[31]  Sanjay V. Rajopadhye,et al.  Unbounded knapsack problem: Dynamic programming revisited , 2000, Eur. J. Oper. Res..

[32]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[33]  Annie Protopapas,et al.  Integrated prioritization method for active and passive highway-rail crossings. , 2013 .

[34]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[35]  Christoph Witzgall Mathematical methods of site selection for Electronic Message Systems (EMS) , 1975 .

[36]  Maxim A. Dulebenets,et al.  A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals , 2017 .

[37]  Dieter Jungnickel,et al.  Approximate minimization algorithms for the 0/1 Knapsack and Subset-Sum Problem , 2000, Oper. Res. Lett..

[38]  Pei-Sung Lin,et al.  Pilot Study for Preventing Incorrect Turns at Highway-Rail Grade Crossings , 2017 .

[39]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[40]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[41]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[42]  Arne Thesen,et al.  A recursive branch and bound algorithm for the multidimensional knapsack problem , 1975 .

[43]  Jeffery E Warner,et al.  Evaluation of Grade Crossing Hazard Ranking Models , 2017 .

[44]  Mohd Rapik Saat,et al.  Highway-Rail Grade Crossing Safety Challenges for Shared Operations of High-Speed Passenger and Heavy Freight Rail in the U.S. , 2014 .

[45]  Saïd Hanafi,et al.  Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .

[46]  法律 Manual on Uniform Traffic Control Devices , 2010 .

[47]  John J. Bartholdi,et al.  The Knapsack Problem , 2008 .

[48]  Herbert S. Wilf,et al.  Algorithms and Complexity , 1994, Lecture Notes in Computer Science.

[49]  C.S. Chang,et al.  Genetic algorithm based bicriterion optimisation for traction substations in DC railway system , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[50]  Jodi L Carson,et al.  An alternative accident prediction model for highway-rail interfaces. , 2002, Accident; analysis and prevention.

[51]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[52]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[53]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[54]  Hadas Shachnai,et al.  There is no EPTAS for two-dimensional knapsack , 2010, Inf. Process. Lett..