Mechanism of lipid‐body formation in prokaryotes: how bacteria fatten up

Neutral lipid accumulation is frequently observed in some Gram‐negative prokaryotes like Acinetobacter sp. and most actinomycetes, including the pathogenic Mycobacterium tuberculosis and antibiotic producing streptomycetes. We examined the formation  of  wax  ester‐  and  triacylglycerol  (TAG)‐bodies in Acinetobacter calcoaceticus and Rhodococcus opacus using microscopic, immunological and biophysical methods. A general model for prokaryotic lipid‐body formation is proposed, clearly differing from the current models for the formation of lipid inclusions in eukaryotes and of poly(hydroxyalkanoic acid) (PHA) inclusions in prokaryotes. Formation of lipid‐bodies starts with the docking of wax ester synthase/acyl‐CoA:diacylglycerol acyltransferase (WS/DGAT) to the cytoplasm membrane. Both, analyses of in vivo and in vitro lipid‐body synthesis, demonstrated the formation of small lipid droplets (SLDs), which remain bound to the membrane‐associated enzyme. SLDs conglomerated subsequently to membrane‐bound lipid‐prebodies which are then released into the cytoplasm. The formation of matured lipid‐bodies in the cytoplasm occurred by means of coalescence of SLDs inside the lipid prebodies, which are surrounded by a half‐unit membrane of phospholipids.

[1]  N. M. Packter,et al.  Ultrastructural studies of neutral lipid localisation inStreptomyces , 1995, Archives of Microbiology.

[2]  Rainer Kalscheuer,et al.  Synthesis of Novel Lipids in Saccharomyces cerevisiae by Heterologous Expression of an Unspecific Bacterial Acyltransferase , 2004, Applied and Environmental Microbiology.

[3]  B. Abomoelak,et al.  Induction of a Novel Class of Diacylglycerol Acyltransferases and Triacylglycerol Accumulation in Mycobacterium tuberculosis as It Goes into a Dormancy-Like State in Culture , 2004, Journal of bacteriology.

[4]  A. Steinbüchel,et al.  The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. , 2004, Microbiology.

[5]  J. Nicaud,et al.  Lipid Accumulation, Lipid Body Formation, and Acyl Coenzyme A Oxidases of the Yeast Yarrowia lipolytica , 2004, Applied and Environmental Microbiology.

[6]  H. Robenek,et al.  Lipids partition caveolin‐1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  H. Schlegel,et al.  Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen , 2004, Archiv für Mikrobiologie.

[8]  R. Marchessault,et al.  Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation , 2004, Applied Microbiology and Biotechnology.

[9]  J. Stubbe,et al.  Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase , 2003 .

[10]  A. Steinbüchel,et al.  A Novel Bifunctional Wax Ester Synthase/Acyl-CoA:Diacylglycerol Acyltransferase Mediates Wax Ester and Triacylglycerol Biosynthesis inAcinetobacter calcoaceticus ADP1* , 2003, The Journal of Biological Chemistry.

[11]  G. Daum,et al.  Triacylglycerol biosynthesis in yeast , 2003, Applied Microbiology and Biotechnology.

[12]  A. Steinbüchel,et al.  Triacylglycerols in prokaryotic microorganisms , 2002, Applied Microbiology and Biotechnology.

[13]  D. Minnikin,et al.  Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. , 2002, Microbiology.

[14]  A. Steinbüchel,et al.  Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins , 2001, Archives of Microbiology.

[15]  D. Murphy The biogenesis and functions of lipid bodies in animals, plants and microorganisms. , 2001, Progress in lipid research.

[16]  P. Shewry,et al.  The seed oleosins: Structure, properties and biological role , 2001 .

[17]  Claudia Steinem,et al.  Mikrogravimetrische Sensoren in der Bioanalytik – eine Alternative zu optischen Biosensoren? , 2000 .

[18]  K. Athenstaedt,et al.  Intracellular lipid particles of eukaryotic cells. , 2000, Biochimica et biophysica acta.

[19]  A. Steinbüchel,et al.  Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126 , 2000, Applied Microbiology and Biotechnology.

[20]  A. Steinbüchel,et al.  Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. , 2000, Microbiology.

[21]  G. Schmitz,et al.  Analysis of Prothrombotic Effects of two Human Monoclonal IgG Antiphospholipid Antibodies of Apparently Similar Specificity , 2000, Thrombosis and Haemostasis.

[22]  J. Vance,et al.  Mechanisms of lipid-body formation. , 1999, Trends in biochemical sciences.

[23]  M R Barer,et al.  Lipid domains of mycobacteria studied with fluorescent molecular probes , 1999, Molecular microbiology.

[24]  A. Kimmel,et al.  Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. , 1999, Seminars in cell & developmental biology.

[25]  N. Dantuma,et al.  Electron Microscopic Visualization of Receptor-mediated Endocytosis of DiI-labeled Lipoproteins by Diaminobenzidine Photoconversion , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[26]  S. Kohlwein,et al.  Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. , 1998, Molecular biology of the cell.

[27]  W. Wilkison,et al.  sn-Glycerol-3-phosphate acyltransferase from Escherichia coli. , 1997, Biochimica et biophysica acta.

[28]  H. Galla,et al.  Impedance analysis of ion transport through gramicidin channels incorporated in solid supported lipid bilayers , 1997 .

[29]  C. Somerville,et al.  Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase , 1997, Journal of bacteriology.

[30]  M. M. Chakrabarty,et al.  THE BIOTECHNOLOGY OF OILS AND FATS , 1997 .

[31]  H. Galla,et al.  Specific binding of peanut agglutinin to GM1-doped solid supported lipid bilayers investigated by shear wave resonator measurements , 1996, European Biophysics Journal.

[32]  A. Steinbüchel,et al.  Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630 , 1996, Archives of Microbiology.

[33]  A. Steinbüchel,et al.  FORMATION OF INTRACYTOPLASMIC LIPID INCLUSION BY RHODOCOOCUS OPACUS PD630 , 1996 .

[34]  G. Daum,et al.  Characterization of lipid particles of the yeast, Saccharomyces cerevisiae , 1994, Yeast.

[35]  N. M. Packter,et al.  Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. , 1994, Microbiology.

[36]  A. Huang Structure of plant seed oil bodies , 1994 .

[37]  S. Kurosawa,et al.  Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. , 1993, Analytical chemistry.

[38]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[39]  J. Tzen,et al.  Surface structure and properties of plant seed oil bodies , 1992, The Journal of cell biology.

[40]  A. Huang,et al.  Oil bodies and oleosins in seeds , 1992 .

[41]  J. Coleman Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3- phosphate acyltransferase activity. , 1990, The Journal of biological chemistry.

[42]  J. Mccormack,et al.  Structure, Distribution and Function of Wax Esters in Acinetobacter calcoaceticus , 1986 .

[43]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[44]  P. K. Jensen,et al.  Isolation of lipid particles from baker's yeast , 1974, FEBS letters.

[45]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[46]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[47]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .