Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields

A novel algorithm to efficiently compute transient wave fields produced by known three-dimensional source constellations is proposed. The algorithm uses domain decomposition concepts and comprises two steps to be repeated for each subdomain considered. In the first step, delay- and amplitude- compensated fields, produced by sources residing inside each subdomain are computed at a sparse set of points surrounding the observation domain. In the second step, total fields in the observer domain are evaluated by interpolation, delay and amplitude restoration, and aggregation of subdomain fields. The proposed scheme is well-suited to accelerate the solution of time domain integral equations by marching on in time, to carry out time domain physical optics calculations, and to realize near- to far-field transformations of transients. Moreover, the scheme automatically adapts to, and takes advantage of, special geometrical features of the source-observer constellation studied, a key benefit when analyzing quasi-planar configurations. In addition, it realizes a seamless transition from the dynamic to the quasi-static regime, thus facilitating a unified treatment of electrically large and small problems. Last but not least, the scheme is remarkably simple to implement.

[1]  W.C. Chew,et al.  A fast algorithm for solving hybrid integral equation , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[2]  Weng Cho Chew,et al.  Fast algorithm for solving hybrid integral equations , 1993 .

[3]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[4]  M. B. Friedman,et al.  Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross Section , 1962 .

[5]  E. Michielssen,et al.  A novel scheme for the solution of the time-domain integral equations of electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[6]  Raphael Kastner,et al.  Hybrid absorbing boundary conditions based on fast nonuniform grid integration for nonconvex scatterers , 2004 .

[7]  E. Michielssen,et al.  Non-uniform grid time domain (NGTD) algorithm for fast evaluation of transient fields , 2003, 2003 IEEE International Symposium on Electromagnetic Compatibility, 2003. EMC '03..

[8]  G. Franceschetti,et al.  On the spatial bandwidth of scattered fields , 1987 .

[9]  E. Michielssen,et al.  Analysis of PCB level EMI phenomena using an adaptive low-frequency plane wave time domain algorithm , 2000, IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.00CH37016).

[10]  A. Boag,et al.  Non-uniform grid (NG) algorithm for fast capacitance extraction , 2004, Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects.

[11]  Weng Cho Chew,et al.  Three-dimensional multilevel fast multipole algorithm from static to electrodynamic , 2000 .

[12]  E. Michielssen,et al.  Nonuniform polar grid algorithm for fast field evaluation , 2002, IEEE Antennas and Wireless Propagation Letters.

[13]  Amir Boag A fast iterative physical optics (FIPO) algorithm based on non‐uniform polar grid interpolation , 2002 .

[14]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[15]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[16]  E. K. Miller,et al.  A selective survey of computational electromagnetics , 1988 .

[17]  Eric Michielssen,et al.  Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm , 2000 .

[18]  R. Mittra,et al.  Integral equation methods for transient scattering , 1976 .