Novel sugar‐binding specificity of the type XIII xylan‐binding domain of a family F/10 xylanase from Streptomyces olivaceoviridis E‐86

[1]  A. Kuno,et al.  Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. , 2000, Journal of molecular biology.

[2]  A. Kuno,et al.  Syntheses of 4-Methylumbelliferyl-β-D-Xylobioside and 5-Bromo-3-Indolyl-β-D-Xylobioside for Sensitive Detection of Xylanase Activity on Agar Plates , 2000 .

[3]  K. Yura,et al.  An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E‐86 by module shuffling with the Cex of Cellulomonas fimi and by site‐directed mutagenesis , 1999, FEBS letters.

[4]  A. Kuno,et al.  Significant enhancement in the binding of p‐nitrophenyl‐β‐d‐xylobioside by the E128H mutant F/10 xylanase from Streptomyces olivaceoviridis E‐86 , 1999, FEBS letters.

[5]  H. Gilbert,et al.  The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved* , 1998, The Journal of Biological Chemistry.

[6]  J. Hirabayashi,et al.  Novel Galactose-binding Proteins in Annelida , 1998, The Journal of Biological Chemistry.

[7]  A. Kuno,et al.  Crystallization and Preliminary X-ray Crystallographic Study of Streptomyces olivaceoviridis E-86 β-Xylanase , 1997 .

[8]  R. Pickersgill,et al.  Key Residues in Subsite F Play a Critical Role in the Activity of Pseudomonas fluorescens Subspecies cellulosa Xylanase A Against Xylooligosaccharides but Not Against Highly Polymeric Substrates such as Xylan* , 1997, The Journal of Biological Chemistry.

[9]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[10]  K. Takeo,et al.  Synthesis of 2-and 4-nitrophenyl β-glycosides of β-(1->4)-D-xylo-oligosaccharides of dp 2-4 , 1995 .

[11]  L. Roberts,et al.  Mutational Analysis of the Ricinus Lectin B-chains , 1995, The Journal of Biological Chemistry.

[12]  T. Tahirov,et al.  Crystal structure of abrin-a at 2.14 A. , 1995, Journal of molecular biology.

[13]  S. Yoshida,et al.  Structure of hardwood xylan and specificity of Streptomyces beta-xylanase toward the xylan. , 1994, Bioscience, biotechnology, and biochemistry.

[14]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[15]  H. Woodland,et al.  Mutational analysis of the galactose binding ability of recombinant ricin B chain. , 1991, The Journal of biological chemistry.

[16]  J. Robertus,et al.  Structure of ricin B‐chain at 2.5 Å resolution , 1991, Proteins.

[17]  N. Xuong,et al.  The three-dimensional structure of ricin at 2.8 A. , 1987, The Journal of biological chemistry.

[18]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[19]  Michael Somogyi,et al.  NOTES ON SUGAR DETERMINATION , 1926 .

[20]  A. Kuno,et al.  PCR cloning and expression of the F/10 family xylanase gene from Streptomyces olivaceoviridis E-86 , 1998 .

[21]  N. Gilkes,et al.  Cellulose hydrolysis by bacteria and fungi. , 1995, Advances in microbial physiology.

[22]  J. Robertus,et al.  Structure and evolution of ricin B chain , 1987, Nature.