Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials

We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known results.

[1]  Francesco Dell'Accio,et al.  A new approach to Bernoulli polynomials , 2006 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Hari M. Srivastava,et al.  Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions , 2006 .

[4]  W. Pribitkin,et al.  A generalization of the Lipschitz summation formula and some applications , 2001 .

[5]  Leonard Carlitz,et al.  Multiplication formulas for products of Bernoulli and Euler polynomials , 1959 .

[6]  Hari M. Srivastava,et al.  Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function , 2008, Appl. Math. Comput..

[7]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[8]  Tianming Wang,et al.  Some results on the Apostol-Bernoulli and Apostol-Euler polynomials , 2008, Comput. Math. Appl..

[9]  Hari M. Srivastava,et al.  Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials , 2005 .

[10]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[11]  Hari M. Srivastava,et al.  Some formulas for the Bernoulli and Euler polynomials at rational arguments , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Tom M. Apostol,et al.  On the Lerch zeta function. , 1951 .

[13]  Qiu-Ming Luo,et al.  APOSTOL-EULER POLYNOMIALS OF HIGHER ORDER AND GAUSSIAN HYPERGEOMETRIC FUNCTIONS , 2006 .

[14]  R. Lipschitz Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen. , 1889 .

[15]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[16]  R. P. Soni,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .

[17]  Hari M. Srivastava,et al.  Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials , 2006, Comput. Math. Appl..

[18]  Irene A. Stegun,et al.  Pocketbook of mathematical functions , 1984 .

[19]  Jacek Klinowski,et al.  New formulae for the Bernoulli and Euler polynomials at rational arguments , 1995 .

[20]  Qiu-Ming Luo An explicit relationship between the generalized Apostol-Bernoulli and Apostol-Euler polynomials associated with ?-Stirling numbers of the second kind , 2010 .

[21]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[22]  Qiu-Ming Luo,et al.  The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of higher order , 2009 .

[23]  H. Bateman,et al.  Higher Transcendental Functions [Volumes I-III] , 1953 .