Characterization of a Micro Fluidic Oscillator for Flow Control

§The fluidic oscillator is a new micro-scale actuator developed for flow control applications. These patented devices can produce a 325-μ μ μ μm wide oscillating jet at high frequencies (over 22 kHz) and very low flow rates (~1 L/min or ~1 g/min). Furthermore, micro fluidic oscillators have no moving parts ‐ the jet oscillations depend solely on the internal fluid dynamics. In this work, the flowfield of a micro fluidic oscillator is characterized using pressure transducers, water visualization, and pressure-sensitive paint (PSP). The acoustic field and frequency spectrum were characterized for the oscillator at several flow rates. Recent advances in porous pressure-sensitive paint technology have enabled measurements of micro-scale flows, as well as at very high frequencies. A macro imaging system was used to provide a spatial resolution of approximately 3-μm per pixel. Porous pressure-sensitive paint allows time-resolved, full-unsteady pressure measurements. Full-field PSP images were acquired of the micro fluidic oscillator flow at oscillation frequencies up to 21 kHz. **

[1]  G. Papadopoulos,et al.  Jet thrust vectoring using a miniature fluidic oscillator , 2005, The Aeronautical Journal (1968).

[2]  Eric J. Jumper,et al.  Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology , 2004 .

[3]  E. Jumper,et al.  Mechanisms and Responses of a Dielectric Barrier Plasma Actuator: Geometric Effects , 2004 .

[4]  Samer Khanafseh,et al.  Development of high bandwidth powered resonance tube actuators with feedback control , 2004 .

[5]  J. Bell,et al.  Surface Pressure Measurements Using Luminescent Coatings , 2003 .

[6]  James W. Gregory,et al.  CHARACTERIZATION OF HARTMANN TUBE FLOW WITH POROUS PRESSURE-SENSITIVE PAINT , 2003 .

[7]  M. Michard,et al.  Control of a Plane Jet by Fluidic Wall Pulsing , 2003 .

[8]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[9]  T. McLaughlin,et al.  Mechanisms and Responses of a Single Dielectric Barrier Plasma , 2003 .

[10]  Calin Tarau,et al.  Sound Attenuation by Glow Discharge Plasma , 2003 .

[11]  James W. Gregory,et al.  FLUIDIC OSCILLATOR AS A DYNAMIC CALIBRATION TOOL , 2002 .

[12]  R. M’Closkey,et al.  The actively controlled jet in crossflow , 2002, Journal of Fluid Mechanics.

[13]  J. Sullivan Molecular Sensors for MEMS , 2002 .

[14]  J. Gregory,et al.  Unsteady Pressure Measurements in Turbomachinery using Porous Pressure Sensitive Paint , 2002 .

[15]  Keisuke Asai,et al.  Recent topics in fast-responding pressure-sensitive paint technology at National Aerospace Laboratory , 2001, ICIASF 2001 Record, 19th International Congress on Instrumentation in Aerospace Simulation Facilities (Cat. No.01CH37215).

[16]  Guillermo Artana,et al.  Flow Control with Electrohydrodynamic Actuators , 2001 .

[17]  Keisuke Asai,et al.  Novel pressure-sensitive paint for cryogenic and unsteady wind tunnel testing , 2000 .

[18]  Timothy J. Bencic,et al.  Cavity Resonance Suppression Using Miniature Fluidic Oscillators , 1999 .

[19]  Ari Glezer,et al.  Direct excitation of small-scale motions in free shear flows , 1998 .

[20]  Stephen B. M. Beck,et al.  Fluidic Pressure Pulse Transmitting Flowmeter , 1997 .

[21]  Bryan Campbell,et al.  Temperature- and Pressure-Sensitive Luminescent Paints in Aerodynamics , 1997 .

[22]  Ganesh Raman,et al.  Using Controlled Unsteady Fluid Mass Addition , 1997 .

[23]  Ganesh Raman,et al.  Jet mixing control using excitation from miniature oscillating jets , 1995 .

[24]  Ganesh Raman,et al.  Evaluation of Flip-Flop Jet Nozzles for Use as Practical Excitation Devices , 1994 .

[25]  J. Callis,et al.  Submillisecond response times of oxygen‐quenched luminescent coatings , 1993 .

[26]  Ganesh Raman,et al.  Flip-Flop Jet Nozzle Extended to Supersonic Flows , 1993 .

[27]  Ari Glezer,et al.  Manipulation of free shear flows using piezoelectric actuators , 1993, Journal of Fluid Mechanics.

[28]  J. Callis,et al.  Luminescent barometry in wind tunnels , 1990 .

[29]  William S. Saric,et al.  Effect of suction and weak mass injection on boundary-layer transition , 1986 .

[30]  J. Peterson,et al.  New technique of surface flow visualization based on oxygen quenching of fluorescence , 1980 .

[31]  Hermann Viets,et al.  Flip-Flop Jet Nozzle , 1975 .

[32]  Joseph M. Kirshner,et al.  Design Theory of Fluidic Components , 1975 .

[33]  James W. Gregory,et al.  Porous Pressure-Sensitive Paint for Characterizing Unsteady Flowfields , 2002 .

[34]  Mo Samimy,et al.  Development and Characterization of Hartmann Tube Fluidic Actuators for High-Speed Flow Control , 2002 .

[35]  Ricardo A. Burdisso,et al.  Experimental Demonstration of Active Flow Control to Reduce Unsteady Stator-Rotor Interaction , 2001 .

[36]  John Magill,et al.  Exploring the Feasibility of Pulsed Jet Separation Control for Aircraft Configurations , 2001 .

[37]  M. Amitay,et al.  SYNTHETIC JETS , 2001 .

[38]  J. Gregory,et al.  FEDSM 2001-18058 CHARACTERIZATION OF MINIATURE FLUIDIC OSCILLATOR FLOWFIELDS USING POROUS PRESSURE SENSITIVE PAINT , 2001 .

[39]  John P. Sullivan,et al.  Time Response of Anodized Aluminum Pressure-Sensitive Paint , 2001 .

[40]  J. Roth,et al.  Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma , 2000 .

[41]  K. Asai,et al.  On the time response of pressure sensitive paints , 2000 .

[42]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[43]  J. Sullivan,et al.  Porous Polymer/Ceramic Composites for Luminescence-Based Temperature and Pressure Measurement , 1999 .

[44]  Hirotaka Sakaue,et al.  Anodized Aluminum Pressure Sensitive Paint in a Cryogenic Wind Tunnel , 1999 .

[45]  Ganesh Raman,et al.  Using Controlled Unsteady Fluid Mass Addition to Enhance Jet Mixing , 1997 .

[46]  Noel Malcolm Morris,et al.  An introduction to fluid logic , 1973 .

[47]  James W. Gregory,et al.  1th International Symposium on Flow Visualization , 2022 .