Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems
暂无分享,去创建一个
Defeng Sun | Jie Sun | Jie Sun | Defeng Sun
[1] P. Lancaster. On eigenvalues of matrices dependent on a parameter , 1964 .
[2] Alexander Shapiro,et al. On Eigenvalue Optimization , 1995, SIAM J. Optim..
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Andreas Fischer,et al. Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..
[5] Liqun Qi,et al. Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..
[6] Raymond H. Chan,et al. On the Convergence Rate of a Quasi-Newton Method for Inverse Eigenvalue Problems , 1999 .
[7] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[8] R. Mifflin. Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .
[9] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[10] F. Biegler-König,et al. A Newton iteration process for inverse eigenvalue problems , 1981 .
[11] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[12] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[13] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[14] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[15] Paul Tseng,et al. Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..
[16] Defeng Sun,et al. Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems , 1997, SIAM J. Optim..
[17] L. Qi,et al. Solving variational inequality problems via smoothing-nonsmooth reformulations , 2001 .
[18] Defeng Sun,et al. Secant methods for semismooth equations , 1998, Numerische Mathematik.
[19] Liqun Qi,et al. A nonsmooth version of Newton's method , 1993, Math. Program..
[20] Shufang Xu,et al. An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .
[21] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[22] Adrian S. Lewis,et al. Nonsmooth analysis of eigenvalues , 1999, Math. Program..
[23] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[24] Hua Dai,et al. An algorithm for symmetric generalized inverse eigenvalue problems , 1999 .
[25] Ji-guang Sun. Eigenvalues and eigenvectors of a matrix dependent on several parameters , 1985 .
[26] Peter Lancaster,et al. Newton's Method for a Generalized Inverse Eigenvalue Problem , 1997, Numer. Linear Algebra Appl..
[27] Defeng Sun,et al. Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..