Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions, which implies that the eigenvalues are semismooth functions. Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a symmetric matrix are strongly semismooth everywhere. As an application, it is demonstrated how this result can be used to analyze the quadratic convergence of Newton's method for solving inverse eigenvalue problems (IEPs) and generalized IEPs with multiple eigenvalues.

[1]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[2]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[5]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[6]  Raymond H. Chan,et al.  On the Convergence Rate of a Quasi-Newton Method for Inverse Eigenvalue Problems , 1999 .

[7]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[8]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[9]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[10]  F. Biegler-König,et al.  A Newton iteration process for inverse eigenvalue problems , 1981 .

[11]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[14]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[15]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[16]  Defeng Sun,et al.  Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems , 1997, SIAM J. Optim..

[17]  L. Qi,et al.  Solving variational inequality problems via smoothing-nonsmooth reformulations , 2001 .

[18]  Defeng Sun,et al.  Secant methods for semismooth equations , 1998, Numerische Mathematik.

[19]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[20]  Shufang Xu,et al.  An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .

[21]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[22]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Hua Dai,et al.  An algorithm for symmetric generalized inverse eigenvalue problems , 1999 .

[25]  Ji-guang Sun Eigenvalues and eigenvectors of a matrix dependent on several parameters , 1985 .

[26]  Peter Lancaster,et al.  Newton's Method for a Generalized Inverse Eigenvalue Problem , 1997, Numer. Linear Algebra Appl..

[27]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..