Smart nanocontainers and nanoreactors.

We highlight recent advances in the synthesis of nanocarriers and nanoreactors from synthetic and biological building blocks with emphasis on the stimulus-responsive regulation of their function.

[1]  Frank Bates,et al.  Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. , 2006, Molecular pharmaceutics.

[2]  Mathias Winterhalter,et al.  Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles , 2000 .

[3]  Ramón Martínez-Máñez,et al.  Toward the development of ionically controlled nanoscopic molecular gates. , 2004, Journal of the American Chemical Society.

[4]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[5]  Linqi Shi,et al.  Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles , 2007 .

[6]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[7]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[8]  Patrick Keller,et al.  Stimuli-responsive polymer vesicles , 2009 .

[9]  T. Okano,et al.  Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[11]  J. Trent,et al.  Ordered nanoparticle arrays formed on engineered chaperonin protein templates , 2002, Nature materials.

[12]  Roeland J. M. Nolte,et al.  A Block Copolymer for Functionalisation of Polymersome Surfaces , 2008 .

[13]  J. F. Stoddart,et al.  Mesostructured Silica Supports for Functional Materials and Molecular Machines , 2007 .

[14]  E. Colacio,et al.  Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. , 2003, Inorganic chemistry.

[15]  Sheng Dai,et al.  pH-Responsive polymers: synthesis, properties and applications. , 2008, Soft matter.

[16]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[17]  Ying-Wei Yang,et al.  Dual-controlled nanoparticles exhibiting AND logic. , 2009, Journal of the American Chemical Society.

[18]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[19]  H. Taguchi,et al.  A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. , 2009, Journal of the American Chemical Society.

[20]  S. Mann,et al.  Magnetoferritin: in vitro synthesis of a novel magnetic protein. , 1992, Science.

[21]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[22]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[23]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[24]  Xiaosong Wang,et al.  Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP). , 2009, Journal of the American Chemical Society.

[25]  Martin Fischlechner,et al.  Viruses as building blocks for materials and devices. , 2007, Angewandte Chemie.

[26]  H. Kagawa,et al.  A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. , 2005, Journal of the American Chemical Society.

[27]  V. Torchilin,et al.  Structure and design of polymeric surfactant-based drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[28]  S. Armes,et al.  pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. , 2005, Journal of the American Chemical Society.

[29]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[30]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[31]  Toyoichi Tanaka,et al.  Volume phase transition in a nonionic gel , 1984 .

[32]  S. Franzen,et al.  Controlled encapsidation of gold nanoparticles by a viral protein shell. , 2006, Journal of the American Chemical Society.

[33]  Kageyama,et al.  Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica , 1999, Science.

[34]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[35]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[36]  T. Mates,et al.  Influence of heterogenization on catalytic behavior of mono- and bimetallic nanoparticles formed in poly(styrene)-block-poly(4-vinylpyridine) micelles , 2009 .

[37]  S. Mann,et al.  Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors , 1996 .

[38]  R. Schubert,et al.  Micelle and vesicle formation of amphiphilic nanoparticles. , 2009, Angewandte Chemie.

[39]  A. Stein,et al.  Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction , 1997 .

[40]  Ana B. Descalzo,et al.  The supramolecular chemistry of organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[41]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[42]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[43]  H. Chen,et al.  Thermally Responsive Reversed Micelles for Immobilization of Enzymes , 2008 .

[44]  G. Erker,et al.  Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin. , 2008, Chemical communications.

[45]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[46]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[47]  Trevor Douglas,et al.  Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. , 2006, Chemistry & biology.

[48]  T. Okano,et al.  Micelles based on AB block copolymers of poly(ethylene oxide) and poly(.beta.-benzyl L-aspartate) , 1993 .

[49]  Madhavan Nallani,et al.  Sorting catalytically active polymersome nanoreactors by flow cytometry. , 2009, Small.

[50]  Stephen Mann,et al.  Life as a nanoscale phenomenon. , 2008, Angewandte Chemie.

[51]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[52]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[53]  C. Chern,et al.  Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. , 2008, Angewandte Chemie.

[54]  M. Zhang,et al.  Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery , 2009 .

[55]  J. V. van Hest,et al.  Polymeric microcapsules for synthetic applications. , 2008, Macromolecular bioscience.

[56]  A. Vigalok,et al.  Amphiphilic Block Polypeptide‐Type Ligands for Micellar Catalysis in Water , 2009 .

[57]  G. Erker,et al.  Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. , 2008, Journal of the American Chemical Society.

[58]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[59]  Lisa Pakstis,et al.  Stimuli-responsive polypeptide vesicles by conformation-specific assembly , 2004, Nature materials.

[60]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[61]  A. Belcher,et al.  Bio‐inspired Synthesis of Protein‐Encapsulated CoPt Nanoparticles , 2005 .

[62]  John E. Johnson,et al.  Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. , 2003 .

[63]  Larry A. Sklar,et al.  Control of Molecular Transport Through Stimuli‐Responsive Ordered Mesoporous Materials , 2003 .

[64]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[65]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[66]  R. Naik,et al.  Engineered protein cages for nanomaterial synthesis. , 2004, Journal of the American Chemical Society.

[67]  W. Meier,et al.  Biomimetic membranes designed from amphiphilic block copolymers. , 2006, Soft matter.

[68]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[69]  Yuen A. Lau,et al.  Mechanised nanoparticles for drug delivery. , 2009, Nanoscale.

[70]  F. Rey,et al.  Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica , 1995, Nature.

[71]  O. Nuyken,et al.  Functionalization of Amphiphilic Poly(2-oxazoline) Block Copolymers: A Novel Class of Macroligands for Micellar Catalysis† , 2000 .

[72]  Trevor Douglas,et al.  The Small Heat Shock Protein Cage from Methanococcus jannaschii Is a Versatile Nanoscale Platform for Genetic and Chemical Modification , 2003 .

[73]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[74]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[75]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[76]  S. MacNeil,et al.  Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery , 2007 .

[77]  John E. Johnson,et al.  Icosahedral virus particles as addressable nanoscale building blocks. , 2002, Angewandte Chemie.

[78]  I. Yamashita,et al.  Bio-template Synthesis of Uniform CdSe Nanoparticles Using Cage-shaped Protein, Apoferritin , 2004 .

[79]  T. Douglas,et al.  Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. , 2000, Inorganic chemistry.

[80]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[81]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[82]  S. Franzen,et al.  Encapsidation of nanoparticles by red clover necrotic mosaic virus. , 2007, Journal of the American Chemical Society.

[83]  Jmw Jean-Francois Gohy Metallo-supramolecular block copolymer micelles , 2002 .

[84]  M. Finn,et al.  Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. , 2005, Chemical communications.

[85]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[86]  B. Gallois,et al.  X-ray structure of recombinant horse L-chain apoferritin at 2.0 Å resolution: implications for stability and function , 1997, JBIC Journal of Biological Inorganic Chemistry.

[87]  W. Li,et al.  Synthesis of thermoresponsive polymeric micelles of PNIPAAm‐b‐OMMA as a drug carrier for loading and controlled release of prednisolone , 2008 .

[88]  P. Minoofar,et al.  Controlled placement of luminescent molecules and polymers in mesostructured sol--gel thin films. , 2001, Journal of the American Chemical Society.

[89]  Roeland J. M. Nolte,et al.  A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli‐Responsive Block Copolymers , 2009 .

[90]  F. Bates,et al.  Polymer vesicles in vivo: correlations with PEG molecular weight. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[91]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[92]  S. Mann,et al.  Synthesis and Structure of an Iron(III) Sulfide-Ferritin Bioinorganic Nanocomposite , 1995, Science.

[93]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[94]  Peter Lindner,et al.  pH-induced release from P2VP-PEO block copolymer vesicles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[95]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[96]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[97]  P. Keller,et al.  Polymer vesicles formed by amphiphilic diblock copolymers containing a thermotropic liquid crystalline polymer block. , 2005, Chemical communications.

[98]  H. Yoshimura,et al.  Self-organized inorganic nanoparticle arrays on protein lattices. , 2005, Nano letters.

[99]  Nico A J M Sommerdijk,et al.  A virus-based single-enzyme nanoreactor. , 2007, Nature nanotechnology.

[100]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[101]  R. Nolte,et al.  Electroformed giant vesicles from thiophene-containing rod-coil diblock copolymers , 2004 .

[102]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[103]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[104]  John E. Johnson,et al.  Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. , 2002, Chemistry & biology.

[105]  Eun Seong Lee,et al.  Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[106]  M. Botta,et al.  Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. , 2007, Nano letters.

[107]  Frank Bates,et al.  Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[108]  Duane E. Prasuhn,et al.  Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. , 2007, Chemical communications.

[109]  D. Discher,et al.  Targeted worm micelles. , 2004, Biomacromolecules.

[110]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[111]  B. Gowen,et al.  ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy , 2001, Cell.

[112]  F. Brochard-Wyart,et al.  Bursting of sensitive polymersomes induced by curling , 2009, Proceedings of the National Academy of Sciences.

[113]  A. Kishimura,et al.  Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. , 2006, Journal of the American Chemical Society.

[114]  S. Mann,et al.  Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. , 1995, Journal of inorganic biochemistry.

[115]  Zhiyuan Zhong,et al.  Stimuli-responsive polymersomes for programmed drug delivery. , 2009, Biomacromolecules.

[116]  Stephan Marsch,et al.  Cell-specific integration of artificial organelles based on functionalized polymer vesicles. , 2008, Nano letters.

[117]  S. Mann,et al.  Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites , 1996 .

[118]  Stephen Mann,et al.  Molecular tectonics in biomineralization and biomimetic materials chemistry , 1993, Nature.

[119]  B. Sumerlin,et al.  Facile strategy to well-defined water-soluble boronic acid (co)polymers. , 2007, Journal of the American Chemical Society.

[120]  D. Rice,et al.  Ferritin: design and formation of an iron-storage molecule. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[121]  Z. Lazarova,et al.  Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. , 2008, Biotechnology advances.

[122]  K. Yoshizawa,et al.  Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. , 2005, Inorganic chemistry.

[123]  Stephan Marsch,et al.  Cell targeting by a generic receptor-targeted polymer nanocontainer platform. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[124]  Stephen Mann,et al.  Synthesis of inorganic nanophase materials in supramolecular protein cages , 1991, Nature.

[125]  Jacob M Hooker,et al.  Interior surface modification of bacteriophage MS2. , 2004, Journal of the American Chemical Society.

[126]  J. Leroux,et al.  Micelles in anticancer drug delivery , 2004 .

[127]  M. Finn,et al.  Chemical modification of viruses and virus-like particles. , 2009, Current topics in microbiology and immunology.

[128]  T. Aida,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. , 2003 .

[129]  Ichiro Yamashita,et al.  Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin , 2003, Biotechnology and bioengineering.

[130]  E. Lissi,et al.  Kinetics of reactions catalyzed by enzymes in solutions of surfactants. , 2008, Advances in colloid and interface science.

[131]  Jacob M Hooker,et al.  Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. , 2007, Bioconjugate chemistry.

[132]  Lars Dähne,et al.  Smart Micro‐ and Nanocontainers for Storage, Transport, and Release , 2001 .

[133]  A. Kishimura,et al.  Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. , 2007, Angewandte Chemie.

[134]  Chulhee Kim,et al.  Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition. , 2009, Angewandte Chemie.

[135]  T. Akita,et al.  Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin. , 2009, Chemical communications.

[136]  Stephen Mann,et al.  Characterization of the manganese core of reconstituted ferritin by x-ray absorption spectroscopy , 1993 .

[137]  B. Sumerlin,et al.  Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. , 2009, Chemical communications.

[138]  Roeland J. M. Nolte,et al.  Polymersomes: Small 10/2009 , 2009 .

[139]  Madhavan Nallani,et al.  A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. , 2009, Chemistry.

[140]  J. V. Hest,et al.  Protein-based materials, toward a new level of structural control. , 2001, Chemical communications.

[141]  Helmuth Möhwald,et al.  Redox-controlled molecular permeability of composite-wall microcapsules , 2006, Nature materials.

[142]  R. Nolte,et al.  Polymeric monosaccharide receptors responsive at neutral pH. , 2009, Journal of the American Chemical Society.

[143]  Sonny C. Hsiao,et al.  Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. , 2009, Journal of the American Chemical Society.

[144]  F. Ahmed,et al.  Block Copolymer Assemblies with Cross-Link Stabilization: From Single-Component Monolayers to Bilayer Blends with PEO−PLA† , 2003 .

[145]  Jan C M van Hest,et al.  Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. , 2007, Angewandte Chemie.

[146]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[147]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  R. Nolte,et al.  Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles. , 2008, Chemical communications.

[149]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[150]  Fenghua Meng,et al.  Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[151]  R. Nolte,et al.  Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. , 2003, Angewandte Chemie.

[152]  R. Nolte,et al.  A virus-based biocatalyst. , 2007, Nature nanotechnology.

[153]  G. Ozin,et al.  Periodic mesoporous organosilicas with organic groups inside the channel walls , 1999, Nature.

[154]  Jason Wiggins,et al.  Self assembled nanoparticulate CO:PT for data storage applications , 2000 .

[155]  Madhavan Nallani,et al.  Polymersome nanoreactors for enzymatic ring-opening polymerization. , 2007, Biomacromolecules.

[156]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[157]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[158]  R. Nolte,et al.  Viruses and protein cages as nanocontainers and nanoreactors , 2009 .

[159]  K. Hirata,et al.  Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. , 2009, Journal of the American Chemical Society.

[160]  M. Drofenik,et al.  Reverse micelles: inert nano-reactors or physico-chemically active guides of the capped reactions. , 2007, Advances in colloid and interface science.