Locating an obstacle in a 3D finite depth ocean using the convex scattering support

We consider an inverse scattering problem in a 3D homogeneous shallow ocean. Specifically, we describe a simple and efficient inverse method which can compute an approximation of the vertical projection of an immersed obstacle. This reconstruction is obtained from the far-field patterns generated by illuminating the obstacle with a single incident wave at a given fixed frequency. The technique is based on an implementation of the theory of the convex scattering support [S. Kusiak, J. Sylvester, The scattering support, Commun. Pure Appl. Math. (2003) 1525-1548]. A few examples are presented to show the feasibility of the method.

[1]  Armand Wirgin,et al.  Identification, by the intersecting canonical domain method, of the size, shape and depth of a soft body of revolution located within an acoustic waveguide , 2000 .

[2]  Yongzhi Xu,et al.  The propagating solutions and far-field patterns for acoustic harmonic waves in a finite depth ocean , 1990 .

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  Steven Kusiak,et al.  The scattering support , 2003 .

[5]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[6]  R. Kress Linear Integral Equations , 1989 .

[7]  A. Wirgin,et al.  Shape reconstruction using diffracted waves and canonical solutions , 1995 .

[8]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[9]  Armand Wirgin,et al.  Identification of the size, proportions and location of a soft body of revolution in a shallow-water waveguide , 2000 .

[10]  Roland Potthast,et al.  A 'range test' for determining scatterers with unknown physical properties , 2003 .

[11]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[12]  A. Ramm,et al.  Spectral and scattering theory , 2020 .

[13]  Yongzhi S. Xu A note on the uniqueness of the propagating solution for acoustic waves in a finite depth ocean , 1997 .

[14]  A. F. Whiting Identification , 1960, Australian Water Bugs. (Hemiptera - Heteroptera, Gerromorpha & Nepomorpha).

[15]  Dominique Lesselier,et al.  Shape retrieval of an obstacle immersed in shallow water from single-frequency farfields using a complete family method , 1997 .

[16]  Yongzhi S. Xu,et al.  Identification of a 3D object in a shallow sea from scattered sound , 1997 .

[17]  A. Ramm,et al.  Scattering by Obstacles in Acoustic Waveguides , 1998 .

[18]  V. Edwards Scattering Theory , 1973, Nature.

[19]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[20]  Yongzhi Xu,et al.  Generalized dual space indicator method for underwater imaging , 2000 .