On the use of panel data in stochastic frontier models with improper priors

Abstract We consider a Bayesian analysis of the stochastic frontier model with composed error. Under a commonly used class of (partly) noninformative prior distributions, the existence of the posterior distribution and of posterior moments is examined. Viewing this model as a Normal linear regression model with regression parameters corresponding to both the frontier and the inefficiency terms, generates the insights used to derived results in a very wide framework. It is found that in pure cross-section models posterior inference is precluded under this ‘usual’ class of priors. Existence of a well-defined posterior distribution then crucially hinges upon the structure imposed on the inefficiency terms. Exploiting panel data naturally suggests the use of more structured models, where Bayesian inference can be conducted.

[1]  M. Mouchart A note on Bayes Theorem , 1976 .

[2]  M. Steel,et al.  Stochastic frontier models: a bayesian perspective , 1994 .

[3]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[4]  P. Schmidt,et al.  Production Frontiers and Panel Data , 1984 .

[5]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[6]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[7]  John Geweke,et al.  Posterior simulators in econometrics , 1995 .

[8]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[9]  M. Steel,et al.  Modeling and Inference with υ-Spherical Distributions , 1995 .

[10]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[11]  P. Schmidt,et al.  Production frontiers with cross-sectional and time-series variation in efficiency levels , 1990 .

[12]  M. Steel,et al.  On Bayesian Inference under Sampling from Scale Mixtures of Normals , 1996 .

[13]  Jacek Osiewalski,et al.  Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models , 1998 .

[14]  Gary Koop,et al.  Bayesian efficiency analysis through individual effects: Hospital cost frontiers , 1997 .

[15]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[16]  M. Steel,et al.  Classical and Bayesian Inference Robustness in Multivariate Regression models , 1997 .

[17]  M. Steel,et al.  Posterior analysis of stochastic frontier models using Gibbs sampling , 1994 .

[18]  Lung-fei Lee,et al.  The measurement and sources of technical inefficiency in the Indonesian weaving industry , 1981 .

[19]  The Components of Output Growth: A Cross-Country Analysis , 1995 .

[20]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[21]  M. Steel,et al.  Bayesian Efficiency Analysis With a Flexible Form: The AIM Cost Function , 1994 .

[22]  S. Kumbhakar Production frontiers, panel data, and time-varying technical inefficiency , 1990 .

[23]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[24]  B. M. Hill,et al.  Inference about Variance Components in the One-Way Model , 1965 .

[25]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[26]  Walter R. Gilks,et al.  [Bayesian Computation and Stochastic Systems]: Comment , 1995 .

[27]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .