A trigonometric Galerkin method for volume integral equations arising in TM grating scattering

Transverse magnetic (TM) scattering of an electromagnetic wave from a periodic dielectric diffraction grating can mathematically be described by a volume integral equation.This volume integral equation, however, in general fails to feature a weakly singular integral operator. Nevertheless, after a suitable periodization, the involved integral operator can be efficiently evaluated on trigonometric polynomials using the fast Fourier transform (FFT) and iterative methods can be used to solve the integral equation. Using Fredholm theory, we prove that a trigonometric Galerkin discretization applied to the periodized integral equation converges with optimal order to the solution of the scattering problem. The main advantage of this FFT-based discretization scheme is that the resulting numerical method is particularly easy to implement, avoiding for instance the need to evaluate quasiperiodic Green’s functions.

[1]  A. Bonnet-Bendhia,et al.  Guided waves by electromagnetic gratings and non‐uniqueness examples for the diffraction problem , 1994 .

[2]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[3]  J. Kottmann,et al.  Accurate solution of the volume integral equation for high-permittivity scatterers , 2000 .

[4]  C. M. Linton,et al.  The Green's Function for the Two-Dimensional Helmholtz Equation in Periodic Domains , 1998 .

[5]  P. M. Berg,et al.  The three dimensional weak form of the conjugate gradient FFT method for solving scattering problems , 1992 .

[6]  Roland Potthast,et al.  Electromagnetic Scattering from an Orthotropic Medium , 1999 .

[7]  J. Richmond Scattering by a dielectric cylinder of arbitrary cross section shape , 1965 .

[8]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[9]  J. Richmond,et al.  TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape , 1966 .

[10]  Er-Ping Li,et al.  Volume integral equation analysis of surface plasmon resonance of nanoparticles. , 2007, Optics express.

[11]  El Hadji Koné,et al.  Equations intégrales volumiques pour la diffraction d'ondes électromagnétiques par un corps diélectrique , 2010 .

[12]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[13]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[14]  J. Davenport Editor , 1960 .

[15]  M. Costabel,et al.  The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body , 2012 .

[16]  A. Kirsch,et al.  The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in L 2 , 2009 .

[17]  Jussi Rahola,et al.  Solution of Dense Systems of Linear Equations in the Discrete-Dipole Approximation , 1996, SIAM J. Sci. Comput..

[18]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[19]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[20]  G. Schmidt,et al.  Diffraction in periodic structures and optimal design of binary gratings. Part I : Direct problems and gradient formulas , 1998 .

[21]  Le-Wei Li,et al.  Precorrected-FFT solution of the volume Integral equation for 3-D inhomogeneous dielectric objects , 2005, IEEE Transactions on Antennas and Propagation.

[22]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[23]  Yoshihiro Otani,et al.  An FMM for orthotropic periodic boundary value problems for Maxwell's equations , 2009 .

[24]  Leslie Greengard,et al.  A new integral representation for quasi-periodic scattering problems in two dimensions , 2011 .

[25]  T. Arens Scattering by Biperiodic Layered Media: The Integral Equation Approach , 2010 .

[26]  Qing Huo Liu,et al.  A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects , 2002, IEEE Antennas and Wireless Propagation Letters.

[27]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[28]  Armin Lechleiter,et al.  Volume integral equations for scattering from anisotropic diffraction gratings , 2012, 1201.0743.

[29]  Martin Costabel,et al.  Volume and surface integral equations for electromagnetic scattering by a dielectric body , 2010, J. Comput. Appl. Math..