Fiber-Optic Rotation Sensors. Tutorial Review

The measurement of rotation is of considerable interest in a number of areas. For example, inertial navigation systems as used in aircraft and spacecraft depend critically on accurate inertial rotation sensors. The allowable errors in rotation sensor performance depend on the particular application. Typical requirements for aircraft navigation lie between 0.01 and 0.001 degree/hour. In terms of earth rotation rate Ωe = 15 degrees/hour this becomes 10-3 to 10-4 ΩE. A number of other applications of rotation sensors exist such as surveying where the accurate determination of azimuth and geodetic latitude is important [T]. In this case performance of 10-6 ΩE or better is needed. Geophysics applications include the determination of astronomical latitude, and the monitoring of polar motion caused by wobble, rotation, precession and wandering effects [1]. A highly precise rotation sensor may be used to measure any changes in the length of the day and to detect torsional oscillations in the earth caused by earthquakes. Finally, ultraprecise sensors may find applications in relativity related experiments such as the determination of the preferred frame, dragging of inertial frames, etc. [2].

[1]  R. Shorthill,et al.  Fiber ring interferometer. , 1976, Applied optics.

[2]  E Udd,et al.  Phase-nulling fiber-optic laser gyro. , 1979, Optics letters.

[3]  H J Shaw,et al.  Limitation of rotation sensing by scattering. , 1980, Optics letters.

[4]  D. Shupe,et al.  Thermally induced nonreciprocity in the fiber-optic interferometer. , 1980, Applied optics.

[5]  A. Simon,et al.  Evolution of polarization along a single‐mode fiber , 1977 .

[6]  Thomas G. Giallorenzi,et al.  Single-mode fiber-optical power divider: encapsulated etching technique , 1979 .

[7]  W. Leeb,et al.  Reciprocity of birefringent single-mode fibers for optical gyros. , 1979, Applied optics.

[8]  E Weidel,et al.  Low-noise fiber-optic rotation sensing. , 1981, Optics letters.

[9]  Klaus Petermann,et al.  Low-drift fibre gyro using a superluminescent diode , 1981 .

[10]  R. Ulrich,et al.  Polarization stabilization on single‐mode fiber , 1979 .

[11]  A. H. Rosenthal Regenerative Circulatory Multiple-Beam Interferometry for the Study of Light-Propagation Effects , 1962 .

[12]  S. Ezekiel,et al.  Closed-loop, low-noise fiber-optic rotation sensor. , 1981, Optics letters.

[13]  R Ulrich,et al.  Fiber-optic rotation sensing with low drift. , 1980, Optics letters.

[14]  A. Yariv Introduction to optical electronics , 1971 .

[15]  Irl W. Smith,et al.  Laser gyro at quantum limit , 1980 .

[16]  H. Arditty,et al.  Sagnac effect in fiber gyroscopes. , 1981, Optics letters.

[17]  S. K. Yao,et al.  Sagnac fiber‐ring interferometer gyro with electronic phase sensing using a (GaAl)As laser , 1978 .

[18]  H J Shaw,et al.  All-single-mode fiber-optic gyroscope with long-term stability. , 1981, Optics letters.

[19]  E. Kintner,et al.  Polarization control in optical-fiber gyroscopes. , 1981, Optics letters.

[20]  Shaoul Ezekiel,et al.  Passive ring resonator laser gyroscope , 1977 .

[21]  Ivan P. Kaminow,et al.  Polarization in optical fibers , 1981 .

[22]  M. Prentiss,et al.  Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity. , 1981, Optics letters.