Evaluation of Fracture Parameters for Cracks in Coupled Thermoelasticity for Functionally Graded Materials

Abstract The finite element method (FEM) is developed for coupled thermoelastic crack problems if material properties are continuously varying. The weak form is utilized to derive the FEM equations. In conventional fracture theories the state of stress and strain at the crack tip vicinity is characterized by a single fracture parameter, namely the stress intensity factor or its equivalent, J-integral. In the present paper it is considered also the second fracture parameter called as the T-stress. For evaluation of both fracture parameters the quarter-point crack tip element is developed. Simple formulas for both fracture parameters are derived comparing the variation of displacements in the quarter-point element with asymptotic expression of displacement at the crack tip vicinity. The leading terms of the asymptotic expansions of fields in the crack-tip vicinity in a functionally graded material (FGM) are the same as in a homogeneous one with material coefficients taken at the crack tip.

[1]  M. Pavier,et al.  The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading , 2001 .

[2]  A. Kfouri Some evaluations of the elastic T-term using Eshelby's method , 1986 .

[3]  Glaucio H. Paulino,et al.  T-stress in orthotropic functionally graded materials: Lekhnitskii and Stroh formalisms , 2004 .

[4]  Murat Ozturk,et al.  The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium , 1999 .

[5]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[6]  Choon-Lai Tan,et al.  T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method , 2006 .

[7]  Andrew H. Sherry,et al.  COMPENDIUM OF T‐STRESS SOLUTIONS FOR TWO AND THREE DIMENSIONAL CRACKED GEOMETRIES , 1995 .

[8]  P. Leevers,et al.  Inherent stress biaxiality in various fracture specimen geometries , 1982 .

[9]  S. Suresh,et al.  Fundamentals of functionally graded materials , 1998 .

[10]  Zhongmin Jin,et al.  Crack-Tip Singularity Fields in Nonhomogeneous Body under Thermal Stress Fields , 1995 .

[11]  Glaucio H. Paulino,et al.  The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors , 2003 .

[12]  A. Phan A non-singular boundary integral formula for determining the T-stress for cracks of arbitrary geometry , 2011 .

[13]  Naotake Noda,et al.  Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack , 1993 .

[14]  Jdg Sumpter,et al.  An Experimental Investigation of the T Stress Approach , 1993 .

[15]  A. J. Carlsson,et al.  Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 1973 .

[16]  N. Noda,et al.  Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load , 1996 .

[17]  Naotake Noda,et al.  Crack-Tip Singular Fields in Nonhomogeneous Materials , 1994 .

[18]  J. Sládek,et al.  Evaluation of fracture parameters for crack problems in fgm by a meshless method , 2006 .

[19]  Z. Jin Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture , 1993 .

[20]  Shigeru Aoki,et al.  On the path independent integral-Ĵ , 1980 .

[21]  Glaucio H. Paulino,et al.  A new approach to compute T-stress in functionally graded materials by means of the interaction integral method , 2004 .

[22]  Gao Huajian,et al.  Slightly curved or kinked cracks in anisotropic elastic solids , 1992 .

[23]  J. Sládek,et al.  An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials , 2005 .

[24]  D. Ewing,et al.  The yield-point loads of symmetrically-notched metal strips , 1974 .

[25]  J. G. Williams,et al.  Fracture under complex stress — The angled crack problem , 1984 .

[26]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[27]  Vladimir Sladek,et al.  Integral formulation for elastodynamic T-stresses , 1997 .

[28]  Nakamura Toshio,et al.  Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral , 1992 .

[29]  P. C. Olsen Determining the stress intensity factors KI, KII and the T-term via the conservation laws using the boundary element method , 1994 .

[30]  Naotake Noda,et al.  Thermal stress intensity factors for a crack in a strip of a functionally gradient material , 1993 .

[31]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[32]  Vladimir Sladek,et al.  Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the coservation integral method , 1997 .

[33]  J. W. Eischen,et al.  Fracture of nonhomogeneous materials , 1987, International Journal of Fracture.

[34]  J. Dolbow,et al.  On the computation of mixed-mode stress intensity factors in functionally graded materials , 2002 .

[35]  Sharif Rahman,et al.  Mesh-free analysis of cracks in isotropic functionally graded materials , 2003 .

[36]  Choon-Lai Tan,et al.  The use of quarter-point crack-tip elements for T-stress determination in boundary element method analysis , 2003 .

[37]  G. Paulino,et al.  Finite element evaluation of mixed mode stress intensity factors in functionally graded materials , 2002 .

[38]  R. H. Dodds,et al.  Failure of Functionally Graded Materials , 2014 .

[39]  J. Hancock,et al.  Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields , 1991 .

[40]  F. Erdogan,et al.  Mode I Crack Problem in an Inhomogeneous Orthotropic Medium , 1997 .

[41]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[42]  Rinze Benedictus,et al.  A review of T-stress and its effects in fracture mechanics , 2015 .

[43]  Robert J. Asaro,et al.  Cracks in functionally graded materials , 1997 .

[44]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[45]  J. W. Hancock,et al.  Shallow crack toughness of HY80 welds : an analysis based on T stresses , 1991 .

[46]  P. C. Paris,et al.  On cracks in rectilinearly anisotropic bodies , 1965 .

[47]  N. Noda,et al.  An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading , 1993 .

[48]  J. D. Eshelby,et al.  Anisotropic elasticity with applications to dislocation theory , 1953 .

[49]  Vladimir Sladek,et al.  EVALUATIONS OF THE T-STRESS FOR INTERFACE CRACKS BY THE BOUNDARY ELEMENT METHOD , 1997 .

[50]  Fazil Erdogan Fracture mechanics of functionally graded materials , 1995 .

[51]  James G. Goree,et al.  T-stress based fracture model for cracks in isotropic materials , 1998 .

[52]  L. Tham,et al.  Boundary element analysis of crack problems in functionally graded materials , 2003 .

[53]  Glaucio H. Paulino,et al.  T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method , 2003 .