Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density

[1]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[2]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[3]  Zhijia Du,et al.  Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries , 2017, Journal of Applied Electrochemistry.

[4]  Y. Meng,et al.  Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries , 2017 .

[5]  S. Uhlenbruck,et al.  Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[7]  Doron Aurbach,et al.  A brief review: Past, present and future of lithium ion batteries , 2016, Russian Journal of Electrochemistry.

[8]  Maohua Sheng,et al.  Carbon‐Coated Porous Aluminum Foil Anode for High‐Rate, Long‐Term Cycling Stability, and High Energy Density Dual‐Ion Batteries , 2016, Advanced materials.

[9]  M. Winter,et al.  Impact of Selected LiPF6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells. , 2016, ACS applied materials & interfaces.

[10]  Martin Winter,et al.  Unraveling transition metal dissolution of Li 1.04 Ni 1/3 Co 1/3 Mn 1/3 O 2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique , 2016 .

[11]  M. Winter,et al.  Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes , 2016 .

[12]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[13]  H. Baltruschat,et al.  Calcium–Oxygen Batteries as a Promising Alternative to Sodium–Oxygen Batteries , 2016 .

[14]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[15]  Wolfgang Haselrieder,et al.  Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes , 2016 .

[16]  M. Winter,et al.  Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium‐Ion Batteries , 2016 .

[17]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[18]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[19]  Peter Bieker,et al.  Lithium‐Ionen‐Technologie und was danach kommen könnte , 2016 .

[20]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[21]  M. Winter,et al.  Nanostructured ZnFe2O4 as Anode Material for Lithium-Ion Batteries: Ionic Liquid-Assisted Synthesis and Performance Evaluation with Special Emphasis on Comparative Metal Dissolution. , 2016, Acta chimica Slovenica.

[22]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[23]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[24]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[25]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[26]  Haidong Liu,et al.  Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. , 2016, ACS applied materials & interfaces.

[27]  Peter Bieker,et al.  Was braucht man für eine Super-Batterie? , 2016 .

[28]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[29]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[30]  J. M. Tarascon The Li-Ion Battery: 25 Years of Exciting and Enriching Experiences , 2016 .

[31]  Ashok K. Vijh,et al.  Lithium batteries : science and technology , 2016 .

[32]  T. Ishihara,et al.  Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte , 2016 .

[33]  H. Gasteiger,et al.  Erratum: Review—Electromobility: Batteries or Fuel Cells? [J. Electrochem. Soc., 162, A2605 (2015)] , 2016 .

[34]  M. Winter,et al.  Investigations on the C-Rate and Temperature Dependence of Manganese Dissolution/Deposition in LiMn2O4/Li4Ti5O12 Lithium Ion Batteries , 2016 .

[35]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[36]  George W. Crabtree,et al.  The energy-storage frontier: Lithium-ion batteries and beyond , 2015 .

[37]  S. Ong,et al.  Design Principles for Solid‐State Lithium Superionic Conductors , 2015 .

[38]  M. Winter,et al.  New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value , 2015 .

[39]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[40]  Da Deng,et al.  Li‐ion batteries: basics, progress, and challenges , 2015 .

[41]  H. Nirschl,et al.  Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries , 2015 .

[42]  Jens Tübke,et al.  Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells , 2015 .

[43]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[44]  R. Hamlen,et al.  Lithium–titanium disulfide rechargeable cell performance after 35 years of storage , 2015 .

[45]  D. Guyomard,et al.  Critical roles of binders and formulation at multiscales of silicon-based composite electrodes , 2015 .

[46]  Hui Zhao,et al.  Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries , 2015 .

[47]  M. Winter,et al.  Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[48]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[49]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[50]  In‐Hwan Lee,et al.  Promising efficiency enhancement in cobalt redox couple-based back-illuminated dye-sensitized solar cells with titanium foil substrate , 2015 .

[51]  Itaru Honma,et al.  Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex , 2015, Scientific Reports.

[52]  M. Winter,et al.  Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes , 2015 .

[53]  Qingbing Xia,et al.  A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method , 2015 .

[54]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[55]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[56]  Myung-Hyun Ryou,et al.  Surface Treatment: Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating (Adv. Funct. Mater. 6/2015) , 2015 .

[57]  Bruno Scrosati,et al.  The Lithium/Air Battery: Still an Emerging System or a Practical Reality? , 2015, Advanced materials.

[58]  Ioannis Chasiotis,et al.  Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes , 2015 .

[59]  S. Martinet,et al.  Cost modeling of lithium‐ion battery cells for automotive applications , 2015 .

[60]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[61]  H. Gasteiger,et al.  Review—Electromobility: Batteries or Fuel Cells? , 2015 .

[62]  M. Winter,et al.  Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4 Composite Cathode Electrode , 2015 .

[63]  M. Winter,et al.  Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries , 2015 .

[64]  John Warner,et al.  Chapter 3 – Basic Terminology , 2015 .

[65]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[66]  M. Winter,et al.  Batterien für medizinische Anwendungen , 2015, Zeitschrift für Herz-,Thorax- und Gefäßchirurgie.

[67]  H. Althues,et al.  Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance , 2014 .

[68]  M. Winter,et al.  Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods , 2014 .

[69]  M. Winter,et al.  Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods , 2014 .

[70]  M. Winter,et al.  Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries , 2014 .

[71]  Leon L. Shaw,et al.  Recent advances in lithium–sulfur batteries , 2014 .

[72]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[73]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[74]  M. Winter,et al.  Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[75]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[76]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[77]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[78]  P. Das,et al.  Mechanism of interactions between CMC binder and Si single crystal facets. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[79]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[80]  M. Winter,et al.  The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material , 2014 .

[81]  M. Winter,et al.  Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite , 2014 .

[82]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[83]  Li-Jun Wan,et al.  Lithium—Sulfur Batteries: Electrochemistry, Materials, and Prospects , 2014 .

[84]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[85]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[86]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[87]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[88]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[89]  Xueliang Sun,et al.  Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application , 2014 .

[90]  Linda F. Nazar,et al.  Sodium and Sodium‐Ion Energy Storage Batteries , 2013 .

[91]  Alan Lipschultz Medical device batteries: ubiquitous and problematic. , 2013, Biomedical instrumentation & technology.

[92]  M. Winter,et al.  Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries , 2013 .

[93]  Bruno Scrosati,et al.  Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. , 2013, Chemical communications.

[94]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[95]  Jung-Hyun Kim,et al.  Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries , 2013 .

[96]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[97]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[98]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[99]  Jagjit Nanda,et al.  Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2 , 2013 .

[100]  Wolfgang Haselrieder,et al.  Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries , 2013 .

[101]  Wolfgang Haselrieder,et al.  Intensive Dry and Wet Mixing Influencing the Structural and Electrochemical Properties of Secondary Lithium-Ion Battery Cathodes , 2013 .

[102]  M. Winter,et al.  Methacrylate based gel polymer electrolyte for lithium-ion batteries , 2013 .

[103]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[104]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[105]  Reiner Korthauer,et al.  Handbuch Lithium-Ionen-Batterien , 2013 .

[106]  M. Winter,et al.  An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices , 2013 .

[107]  Martin Winter,et al.  Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries , 2013 .

[108]  M. Root Medical Device Batteries , 2013 .

[109]  J. R. Moser,et al.  PRIMARY CELLS AND IODINE CONTAINING CATHODES THEREFOR , 2013 .

[110]  Stefania Ferrari,et al.  Recent advances in the development of Li–air batteries , 2012 .

[111]  M. Hirayama,et al.  Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 , 2012 .

[112]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[113]  W. Craig Carter,et al.  Design criteria for electrochemical shock resistant battery electrodes , 2012 .

[114]  B. Owens Batteries for Implantable Biomedical Devices , 2012 .

[115]  Martin Winter,et al.  Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes , 2012 .

[116]  Jean-Marie Tarascon,et al.  Erratum: Li–O 2 and Li–S batteries with high energy storage , 2012 .

[117]  김대규 A secondary battery , 2012 .

[118]  Martin Winter,et al.  Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells , 2012 .

[119]  M. Winter,et al.  Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent , 2012 .

[120]  Kevin G. Gallagher,et al.  Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. , 2011 .

[121]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[122]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[123]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[124]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[125]  Martin Winter,et al.  Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability , 2011 .

[126]  Bruno Scrosati,et al.  History of lithium batteries , 2011 .

[127]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[128]  Wei-Jun Zhang,et al.  Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries , 2011 .

[129]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[130]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[131]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[132]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[133]  D. Guyomard,et al.  Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes , 2010 .

[134]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[135]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[136]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[137]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[138]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[139]  J. Besenhard,et al.  Carbonaceous and Graphitic Anodes , 2009 .

[140]  M. Winter,et al.  Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid , 2008 .

[141]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[142]  M. Armand,et al.  Building better batteries , 2008, Nature.

[143]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[144]  V. Thangadurai,et al.  Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). , 2007, Angewandte Chemie.

[145]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[146]  Kristina Edström,et al.  A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries , 2006 .

[147]  Martin Winter,et al.  Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes , 2006 .

[148]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[149]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[150]  島田 紀子 Nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery electrolyte , 2005 .

[151]  Martin Winter,et al.  What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245−4269. Published on the Web 09/28/2004.) , 2005 .

[152]  M. Broussely,et al.  Li-ion batteries and portable power source prospects for the next 5–10 years , 2004 .

[153]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[154]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[155]  Richard Ewell,et al.  Lithium-Ion rechargeable batteries on Mars Rover , 2004 .

[156]  R. Juza,et al.  Lithium-Graphit-Einlagerungsverbindungen , 2004, Naturwissenschaften.

[157]  Doron Aurbach,et al.  Nonaqueous magnesium electrochemistry and its application in secondary batteries. , 2003, Chemical record.

[158]  Martin Winter,et al.  Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[159]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[160]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[161]  M. Wagner,et al.  The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes , 2001 .

[162]  Martin Winter,et al.  Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries , 2001 .

[163]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[164]  J. Dahn,et al.  Energy and Capacity Projections for Practical Dual‐Graphite Cells , 2000 .

[165]  J. Dahn,et al.  Electrochemical Intercalation of PF 6 into Graphite , 2000 .

[166]  M. Winter,et al.  Wiederaufladbare Batterien- 1.Teil; Akkumulatoren mit wässriger Elektrolytlösung , 1999 .

[167]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[168]  Martin Winter,et al.  Insertion reactions in advanced electrochemical energy storage , 1998 .

[169]  Martin Winter,et al.  Lithium storage alloys as anode materials in lithium ion batteries , 1998 .

[170]  D. Aurbach,et al.  More details on the new LiMnO2 rechargeable battery technology developed at Tadiran , 1997 .

[171]  Petr Novák,et al.  Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries , 1997 .

[172]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[173]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[174]  P. Francis 5532083 Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture , 1997 .

[175]  P. Francis 5518836 Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices , 1997 .

[176]  M. Armand,et al.  Electrochemistry of liquids vs. solids: Polymer electrolytes , 1997 .

[177]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[178]  D. Aurbach,et al.  Safety and Performance of Tadiran TLR‐7103 Rechargeable Batteries. , 1996 .

[179]  P. Trulove,et al.  Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes , 1996 .

[180]  Y. Nishi,et al.  The development of lithium ion secondary batteries , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[181]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[182]  Kazuo Murata,et al.  An overview of the research and development of solid polymer electrolyte batteries , 1995 .

[183]  Martin Winter,et al.  Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes , 1995 .

[184]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[185]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[186]  Michel Armand,et al.  The history of polymer electrolytes , 1994 .

[187]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[188]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[189]  D. Fouchard,et al.  Analysis of safety and reliability in secondary lithium batteries , 1993 .

[190]  W Greatbatch,et al.  The Lithium/Iodine Battery: A Historical Perspective , 1992, Pacing and clinical electrophysiology : PACE.

[191]  Bruno Scrosati,et al.  Lithium Rocking Chair Batteries: An Old Concept? , 1992 .

[192]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[193]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[194]  Günter Eichinger,et al.  Lithiumbatterien II. Entladereaktionen und komplette Zellen , 1990 .

[195]  Günter Eichinger,et al.  Lithiumbatterien I. Chemische Grundlagen , 1990 .

[196]  F. C. Laman,et al.  Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries , 1989 .

[197]  J. B. Taylor,et al.  The molicel® rechargeable lithium system: Multicell aspects , 1987 .

[198]  J. Yamaki,et al.  The cathodic decomposition of propylene carbonate in lithium batteries , 1987 .

[199]  Alain Guyot,et al.  Polymer electrolytes , 1985, Polymer Bulletin.

[200]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[201]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[202]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[203]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[204]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[205]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[206]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[207]  K. Blurton,et al.  Metal/air batteries: Their status and potential — a review , 1979 .

[208]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[209]  M. Whittingham Electrical energy storage and intercalation chemistry. [Li/TiS/sub 2/ with LiPF/sub 6/ or LiClO/sub 4/ electrolyte: ambient temp] , 1976 .

[210]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[211]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[212]  D. Guérard,et al.  Intercalation of lithium into graphite and other carbons , 1975 .

[213]  A. Dey,et al.  The Electrochemical Decomposition of Propylene Carbonate on Graphite , 1970 .

[214]  I. Cekic‐Laskovic,et al.  Reports of Meetings , 1952, Bristol medico-chirurgical journal.