Pajek and PajekXXL

• Tool name, title: Pajek and PajekXXL, program for analysis and visualization of large networks • Creation year: November 1996 • Authors: Vladimir Batagelj and Andrej Mrvar • Range: general network problems with emphasis on large networks • Copyright: free for noncommercial use • Type: program • Scalability: Pajek, one billion vertices; PajekXXL, two billion vertices • Platforms:Windows, using emulators runs also on Linux and Mac • Programming language: Delphi pascal

[1]  Vladimir Batagelj,et al.  Complex Networks, Visualization of , 2009, Encyclopedia of Complexity and Systems Science.

[2]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[3]  P. Doreian,et al.  A partitioning approach to structural balance , 1996 .

[4]  Vladimir Batagelj,et al.  Generalized blockmodeling of two-mode network data , 2004, Soc. Networks.

[5]  Norman P. Hummon,et al.  Connectivity in a citation network: The development of DNA theory☆ , 1989 .

[6]  Andreas Noack,et al.  Multilevel local search algorithms for modularity clustering , 2011, JEAL.

[7]  Bethany S. Dohleman Exploratory social network analysis with Pajek , 2006 .

[8]  Vladimir Batagelj,et al.  Partitioning Approach to Visualization of Large Graphs , 1999, GD.

[9]  Patrick Doreian,et al.  Structural Balance and Signed International Relations , 2015, J. Soc. Struct..

[10]  James Lyle Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[11]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[12]  Patrick Doreian,et al.  Identifying Fragments in Networks for Structural Balance and Tracking the Levels of Balance Over Time , 2016 .

[13]  Patrick Doreian,et al.  Testing two theories for generating signed networks using real data , 2014, Advances in Methodology and Statistics.

[14]  Vladimir Batagelj,et al.  An algebraic approach to temporal network analysis based on temporal quantities , 2015, Social Network Analysis and Mining.

[15]  Ulrik Brandes,et al.  Efficient generation of large random networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Vladimir Batagelj,et al.  Understanding Large Temporal Networks and Spatial Networks , 2014 .

[17]  A. Ferligoj,et al.  Direct and indirect methods for structural equivalence , 1992 .

[18]  Patrick Doreian,et al.  Partitioning Signed Two-Mode Networks , 2009 .

[19]  Vladimir Batagelj,et al.  Fast algorithms for determining (generalized) core groups in social networks , 2011, Adv. Data Anal. Classif..

[20]  Vladimir Batagelj,et al.  Pajek - Analysis and Visualization of Large Networks , 2001, Graph Drawing Software.

[21]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[22]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[23]  V. Batagelj Notes on blockmodeling , 1997 .

[24]  Robin I. M. Dunbar,et al.  Social network size in humans , 2003, Human nature.

[25]  Vladimir Batagelj,et al.  Analysis of Kinship Relations With Pajek , 2008 .

[26]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[27]  D. W. Dearholt,et al.  Graph theoretic foundations of pathfinder networks , 1988 .

[28]  Patrick Doreian,et al.  Partitioning signed social networks , 2009, Soc. Networks.

[29]  Vladimir Batagelj,et al.  Some analyses of Erdős collaboration graph , 2000, Soc. Networks.

[30]  Vladimir Batagelj,et al.  Large-Scale Network Analysis , 2014 .

[31]  Vladimir Batagelj,et al.  Pajek - Analysis and Visualization of Large Networks , 2004, Graph Drawing Software.

[32]  Vladimir Batagelj,et al.  Social Network Analysis, Large-Scale , 2009, Encyclopedia of Complexity and Systems Science.

[33]  Vladimir Batagelj,et al.  Generalized Blockmodeling (Structural Analysis in the Social Sciences) , 2004 .

[34]  Vladimir Batagelj,et al.  Density based approaches to network analysis Analysis of Reuters terror news network , 2003 .

[35]  John S. Liu,et al.  An integrated approach for main path analysis: Development of the Hirsch index as an example , 2012, J. Assoc. Inf. Sci. Technol..

[36]  Vladimir Batagelj,et al.  Efficient Algorithms for Citation Network Analysis , 2003, ArXiv.

[37]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[38]  M. Brusco,et al.  Two Algorithms for Relaxed Structural Balance Partitioning: Linking Theory, Models, and Data to Understand Social Network Phenomena , 2011 .

[39]  Vladimir Batagelj,et al.  Visualisation and analysis of the internet movie database , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[40]  Patrick Doreian,et al.  Partitioning large signed two-mode networks: Problems and prospects , 2013, Soc. Networks.

[41]  Ed C. M. Noyons,et al.  A unified approach to mapping and clustering of bibliometric networks , 2010, J. Informetrics.

[42]  David M. Pennock,et al.  Winners don't take all: Characterizing the competition for links on the web , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Ferligoj,et al.  An optimizational approach to regular equivalence , 1992 .

[44]  Vladimir Batagelj,et al.  On bibliographic networks , 2013, Scientometrics.

[45]  Vladimir Batagelj,et al.  Analysis and visualization of large networks with program package Pajek , 2016, Complex Adapt. Syst. Model..

[46]  Vladimir Batagelj,et al.  Short cycle connectivity , 2007, Discret. Math..

[47]  Vladimir Batagelj,et al.  Semirings for social networks analysis , 1994 .

[48]  Margaret Ann Neale,et al.  Winners (don't) take all , 2003 .

[49]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[50]  Vladimir Batagelj,et al.  Symmetric-Acyclic Decompositions of Networks , 2000, J. Classif..

[51]  Vladimir Batagelj,et al.  Some types of clustering with relational constraints , 1983 .

[52]  Vladimir Batagelj,et al.  A subquadratic triad census algorithm for large sparse networks with small maximum degree , 2001, Soc. Networks.