Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling

We review recent advances in the development of colloidal fluorescent semiconductor nanocrystals (a class of quantum dots) for biological labeling. Although some of the photophysical properties of nanocrystals are not fully understood and are still actively investigated, researchers have begun developing bioconjugation schemes and applying such probes to biological assays. Nanocrystals possess several qualities that make them very attractive for fluorescent tagging: broad excitation spectrum, narrow emission spectrum, precise tunability of their emission peak, longer fluorescence lifetime than organic fluorophores and negligible photobleaching. On the down side, their emission is strongly intermittent ("blinking”) and their size is relatively large for many biological uses. We describe how to take advantage of nanocrystals’ spectral properties to increase the resolution of fluorescence microscopy measurements down to the nanometer level. We also show how their long fluorescence lifetime can be used to observe molecules and organelles in living cells without interference from background autofluorescence, a pre-requisite for single molecule detectability. Finally, their availability in multicolor species and their single molecule sensitivity open up interesting possibilities for genomics applications.

[1]  X Michalet,et al.  Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. , 2001, Methods.

[2]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[3]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[4]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[5]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[6]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[7]  C. Evans,et al.  Surface transformation and photoinduced recovery in CdSe nanocrystals. , 2001, Physical review letters.

[8]  Philippe Guyot-Sionnest,et al.  Electrochromic nanocrystal quantum dots. , 2001, Science.

[9]  Depu Chen,et al.  Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. , 2001, Journal of immunological methods.

[10]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[11]  A Paul Alivisatos,et al.  Ultrahigh-resolution multicolor colocalization of single fluorescent nanocrystals , 2000, SPIE BiOS.

[12]  A. Kadavanich,et al.  Sublattice Resolution Structural and Chemical Analysis of Individual CdSe Nanocrystals Using Atomic Number Contrast Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy , 2001 .

[13]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[14]  Steven R. Cordero,et al.  Photo-activated luminescence of CdSe quantum dot monolayers , 2000 .

[15]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[16]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[17]  M. Bawendi,et al.  Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. , 2000, Physical review letters.

[18]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[19]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[20]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[21]  W. Bae,et al.  Biomolecularly capped uniformly sized nanocrystalline materials: Glutathione-capped ZnS nanocrystals , 1999 .

[22]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[23]  Chia-Chun Chen,et al.  Self-Assembly of Monolayers of Cadmium Selenide Nanocrystals with Dual Color Emission , 1999 .

[24]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[25]  Moungi G. Bawendi,et al.  Spectroscopy of Single CdSe Nanocrystallites , 1999 .

[26]  Moungi G. Bawendi,et al.  Influence of Spectral Diffusion on the Line Shapes of Single CdSe Nanocrystallite Quantum Dots , 1999 .

[27]  Shimon Weiss,et al.  Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals , 1999 .

[28]  A. Eychmüller,et al.  Quantum Wells within Quantum Dots, a CdS/HgS Nanoheterostructure with Global and Local Confinement , 1998 .

[29]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[30]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[31]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[32]  P. Selvin,et al.  Temporally and spectrally resolved imaging microscopy of lanthanide chelates. , 1998, Biophysical journal.

[33]  L. Liz‐Marzán,et al.  Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure , 1998 .

[34]  P. Guyot-Sionnest,et al.  Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals , 1998 .

[35]  L. Brus Chemical approaches to semiconductor nanocrystals , 1998 .

[36]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[37]  W. Göhde,et al.  Investigations of the emission properties of single CdS‐nanocrystallites , 1997 .

[38]  A Bensimon,et al.  pH-dependent specific binding and combing of DNA. , 1997, Biophysical journal.

[39]  S Povey,et al.  Dynamic molecular combing: stretching the whole human genome for high-resolution studies. , 1997, Science.

[40]  D. A. Russell,et al.  Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae. , 1997, Microbiology.

[41]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[42]  A. Efros,et al.  Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot , 1997 .

[43]  Philippe Guyot-Sionnest,et al.  Photoluminescence wandering in single CdSe nanocrystals , 1996 .

[44]  Shimon Weiss,et al.  Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules , 1996 .

[45]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[46]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[47]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .

[48]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[49]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[50]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[51]  Simón,et al.  Stretching DNA with a receding meniscus: Experiments and models. , 1995, Physical review letters.

[52]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[53]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[54]  H Szmacinski,et al.  Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. , 1995, Biophysical journal.

[55]  A Bensimon,et al.  Alignment and sensitive detection of DNA by a moving interface. , 1994, Science.

[56]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[57]  Vicki L. Colvin,et al.  X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface , 1994 .

[58]  H. Weller,et al.  Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide , 1994 .

[59]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[60]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[61]  A. Eychmüller,et al.  A quantum dot quantum well : CdS/HgS/CdS , 1993 .

[62]  Karl W. Böer,et al.  Survey of Semiconductor Physics , 1992 .

[63]  W. P. Ambrose,et al.  Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal , 1991, Nature.

[64]  M. Orrit,et al.  Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. , 1990, Physical review letters.

[65]  Karl W. Böer,et al.  Survey of Semiconductor Physics: Electrons and Other Particles in Bulk Semiconductors , 1990 .

[66]  D. Winge,et al.  Characterization of peptide-coated cadmium-sulfide crystallites , 1990 .

[67]  Louis E. Brus,et al.  Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds and Vice Versa, in Inverse Micelle Media , 1990 .

[68]  D. Winge,et al.  Peptide-mediated formation of quantum semiconductors. , 1990, Trends in biotechnology.

[69]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[70]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[71]  A. Gossard Growth of microstructures by molecular beam epitaxy , 1986 .

[72]  L. Esaki,et al.  A bird's-eye view on the evolution of semiconductor superlattices and quantum wells , 1986 .

[73]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[74]  Yasuhiko Arakawa,et al.  Quantum well lasers--Gain, spectra, dynamics , 1986 .

[75]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .

[76]  D H Burns,et al.  Strategies for attaining superresolution using spectroscopic data as constraints. , 1985, Applied optics.

[77]  Horst Weller,et al.  Photo-Chemistry of Colloidal Metal Sulfides 8. Photo-Physics of Extremely Small CdS Particles: Q-State CdS and Magic Agglomeration Numbers , 1984 .

[78]  A. Henglein,et al.  Photochemistry of Colloidal Metal Sulfides. 7. Absorption and Fluorescence of Extremely Small ZnS Particles (The World of the Neglected Dimensions) , 1984 .

[79]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[80]  L. Brus,et al.  Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids , 1982 .

[81]  R. A. Logan,et al.  Toward quantum well wires: Fabrication and optical properties , 1982 .

[82]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[83]  N. Turro,et al.  Microscopic environment of poly(styrenesulfonate) macroanions. Emission and absorption spectra, lifetime, and depolarization measurements of a cationic fluorescence probe under high pressure , 1982 .

[84]  A. Henglein Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum , 1982 .

[85]  J. K. Thomas,et al.  Photochemistry at the surface of colloidal cadmium sulfide , 1982 .

[86]  Won-Tien Tsang,et al.  Observation of the excited level of excitons in GaAs quantum wells , 1981 .

[87]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[88]  D. Cahen,et al.  Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes , 1976, Nature.

[89]  A. Cho Growth of Periodic Structures by the Molecular‐Beam Method , 1971 .

[90]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .