Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria

Armillaria species are both devastating forest pathogens and some of the largest terrestrial organisms on Earth. They forage for hosts and achieve immense colony sizes via rhizomorphs, root-like multicellular structures of clonal dispersal. Here, we sequenced and analysed the genomes of four Armillaria species and performed RNA sequencing and quantitative proteomic analysis on the invasive and reproductive developmental stages of A. ostoyae. Comparison with 22 related fungi revealed a significant genome expansion in Armillaria, affecting several pathogenicity-related genes, lignocellulose-degrading enzymes and lineage-specific genes expressed during rhizomorph development. Rhizomorphs express an evolutionarily young transcriptome that shares features with the transcriptomes of both fruiting bodies and vegetative mycelia. Several genes show concomitant upregulation in rhizomorphs and fruiting bodies and share cis-regulatory signatures in their promoters, providing genetic and regulatory insights into complex multicellularity in fungi. Our results suggest that the evolution of the unique dispersal and pathogenicity mechanisms of Armillaria might have drawn upon ancestral genetic toolkits for wood-decay, morphogenesis and complex multicellularity.Fungi of the genus Armillaria include devastating forest pathogens that cause root rot disease in many plants. Sequencing genomes and transcriptomes of several species, the authors reveal the genetic basis of dispersal, multicellular development and pathogenic mechanisms in Armillaria.

[1]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[2]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[3]  D. Hibbett,et al.  Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution , 2017, Molecular biology and evolution.

[4]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[5]  H. H. Burdsall,et al.  Armillaria solidipes , an older name for the fungus called Armillaria ostoyae , 2008 .

[6]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[7]  Guo‐Liang Wang,et al.  Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. , 2013, Molecular plant.

[8]  M. Henry,et al.  The iron-responsive microsomal proteome of Aspergillus fumigatus. , 2016, Journal of proteomics.

[9]  R. D. de Vries,et al.  Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes , 2014, Microbiology and Molecular Reviews.

[10]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[11]  M. Donoghue,et al.  Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. , 1997, American journal of botany.

[12]  G. L. Meyers,et al.  Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans , 2016, Nature Communications.

[13]  Francis Martin,et al.  Unearthing the roots of ectomycorrhizal symbioses , 2016, Nature Reviews Microbiology.

[14]  Helaine Carrer,et al.  A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao , 2008, BMC Genomics.

[15]  Maureen J Donlin,et al.  Using the Generic Genome Browser (GBrowse) , 2007, Current protocols in bioinformatics.

[16]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[17]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[18]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[19]  Maureen J Donlin,et al.  Using the Generic Genome Browser (GBrowse) , 2007, Current protocols in bioinformatics.

[20]  Johann N. Bruhn,et al.  The fungus Armillaria bulbosa is among the largest and oldest living organisms , 1992, Nature.

[21]  S. Dongen Graph clustering by flow simulation , 2000 .

[22]  P. Mieczkowski,et al.  Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases , 2014, BMC Genomics.

[23]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[24]  B. Henrissat,et al.  Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum , 2016, Nature Communications.

[25]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[26]  A. Salamov,et al.  Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi , 2012, PLoS pathogens.

[27]  D. J. Lodge,et al.  Major clades of Agaricales: a multilocus phylogenetic overview , 2006, Mycologia.

[28]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[29]  N. Money,et al.  Biomechanics of invasive growth by Armillaria rhizomorphs. , 2009, Fungal genetics and biology : FG & B.

[30]  William Stafford Noble,et al.  Quantifying similarity between motifs , 2007, Genome Biology.

[31]  T. Flutre,et al.  Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.

[32]  B. Howlett,et al.  Secondary metabolism: regulation and role in fungal biology. , 2008, Current opinion in microbiology.

[33]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[34]  T. Keane,et al.  Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus , 2015, Eukaryotic Cell.

[35]  A. Salamov,et al.  Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. , 2012, The New phytologist.

[36]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[37]  H. Quesneville,et al.  PASTEC: An Automatic Transposable Element Classification Tool , 2014, PloS one.

[38]  Dmitrij Frishman,et al.  PEDANT covers all complete RefSeq genomes , 2008, Nucleic Acids Res..

[39]  Wu-chun Feng,et al.  The design, implementation, and evaluation of mpiBLAST , 2003 .

[40]  A. Ashford,et al.  Variations in structure of aerial and submerged rhizomorphs of Armillaria luteobubalina indicate that they may be organs of absorption , 2001 .

[41]  Hélène Chiapello,et al.  FUNYBASE: a FUNgal phYlogenomic dataBASE , 2008, BMC Bioinformatics.

[42]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[43]  A. Microbiology,et al.  Fungal Morphogenesis , 1967, Nature.

[44]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[45]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[46]  G. Poinar,et al.  Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. , 2007, Mycological research.

[47]  Graziano Pesole,et al.  An algorithm for finding signals of unknown length in DNA sequences , 2001, ISMB.

[48]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[49]  B. Richardson,et al.  Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host–pathogen interface , 2013 .

[50]  G. Foster,et al.  A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors. , 2015, Fungal biology.

[51]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[52]  Keith Bradnam,et al.  Assessing the gene space in draft genomes , 2008, Nucleic acids research.

[53]  David Tse,et al.  FinisherSC : A repeat-aware tool for upgrading de-novo assembly using long reads , 2014, bioRxiv.

[54]  K. Hammond-Kosack,et al.  Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. , 2014, Molecular plant-microbe interactions : MPMI.

[55]  G. Sherlock,et al.  Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads , 2010, BMC Genomics.

[56]  B. Zhang,et al.  Knock down of chitosanase expression in phytopathogenic fungus Fusarium solani and its effect on pathogenicity , 2010, Current Genetics.

[57]  N. Talbot,et al.  Genome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae , 2012, PLoS pathogens.

[58]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[59]  Thomas M. Keane,et al.  Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, Armillaria mellea: Toward a New Infection Model System , 2013, Journal of proteome research.

[60]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[61]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[62]  Panayiotis V. Benos,et al.  STAMP: a web tool for exploring DNA-binding motif similarities , 2007, Nucleic Acids Res..

[63]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[64]  M. Künzler Hitting the Sweet Spot: Glycans as Targets of Fungal Defense Effector Proteins , 2015, Molecules.

[65]  Jerzy Jurka,et al.  Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor , 2006, BMC Bioinformatics.

[66]  Casey W. Dunn,et al.  Phyutility: a phyloinformatics tool for trees, alignments and molecular data , 2008, Bioinform..

[67]  Bart P. H. J. Thomma,et al.  Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants , 2010, Science.

[68]  M. Künzler,et al.  Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development , 2014, BMC Genomics.

[69]  Ari Löytynoja,et al.  Phylogeny-aware alignment with PRANK. , 2014, Methods in molecular biology.

[70]  U. Kües,et al.  How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development , 2015 .

[71]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[72]  Graziano Pesole,et al.  Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes , 2004, Nucleic Acids Res..

[73]  Manolis Kellis,et al.  TreeFix: Statistically Informed Gene Tree Error Correction Using Species Trees , 2012, Systematic biology.

[74]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[75]  M. Coetzee,et al.  Secrets of the subterranean pathosystem of Armillaria. , 2011, Molecular plant pathology.

[76]  B. Valent,et al.  Filamentous plant pathogen effectors in action , 2013, Nature Reviews Microbiology.

[77]  P. Robinson,et al.  Whole-exome sequencing for finding de novo mutations in sporadic mental retardation , 2010, Genome Biology.

[78]  S. Raffaele,et al.  Genome evolution in filamentous plant pathogens: why bigger can be better , 2012, Nature Reviews Microbiology.

[79]  Molecular diversity of LysM carbohydrate-binding motifs in fungi , 2015, Current Genetics.

[80]  James K. Hane,et al.  Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8 , 2014, PLoS genetics.

[81]  H. Maeda,et al.  Novel Hydrophobic Surface Binding Protein, HsbA, Produced by Aspergillus oryzae , 2006, Applied and Environmental Microbiology.

[82]  N. L. Glass,et al.  Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. , 2014, Annual review of phytopathology.

[83]  O. Holdenrieder,et al.  Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances , 2004 .

[84]  S. Doyle,et al.  Regulation of nonribosomal peptide synthesis: bis-thiomethylation attenuates gliotoxin biosynthesis in Aspergillus fumigatus. , 2014, Chemistry & biology.

[85]  Xuehong Zhang,et al.  Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes , 2013, Applied Microbiology and Biotechnology.

[86]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[87]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[88]  T. Keane,et al.  RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus , 2014, BMC Genomics.

[89]  D. Hibbett,et al.  Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts , 2014, Nature Communications.

[90]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[91]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[92]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[93]  Eugene W. Myers,et al.  PILER : identification and classification of genomic repeats , 2005 .

[94]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[95]  M. Penttilä,et al.  Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. , 2002, European journal of biochemistry.

[96]  James B. Anderson,et al.  Genomewide mutation dynamic within a long-lived individual of Armillaria gallica , 2014, Mycologia.

[97]  S. Prospero,et al.  A new multilocus approach for a reliable DNA-based identification of Armillaria species , 2013, Mycologia.