Radiolysis of liquid water: An attempt to reconcile Monte-Carlo calculations with new experimental hydrated electron yield data at early times

A re-examination of our Monte-Carlo modeling of the radiolysis of liquid water by low linear-energy-transfer (LET ~ 0.3 keV µm–1) radiation is undertaken herein in an attempt to reconcile the results of our simulation code with recently revised experimental hydrated electron (e–aq) yield data at early times. The thermalization distance of subexcitation electrons, the recombination cross section of the electrons with their water parent cations prior to thermalization, and the branching ratios of the different competing mechanisms in the dissociative decay of vibrationally excited states of water molecules were taken as adjustable parameters in our simulations. Using a global-fit procedure, we have been unable to find a set of values for those parameters to simultaneously reproduce (i) the revised e–aq yield of 4.0 ± 0.2 molecules per 100 eV at "time zero" (that is, a reduction of ~20% over the hitherto accepted value of 4.8 molecules per 100 eV), (ii) the newly measured e–aq decay kinetic profile from 100 ...