Random MAX SAT, random MAX CUT, and their phase transitions
暂无分享,去创建一个
David Gamarnik | Don Coppersmith | Gregory B. Sorkin | MohammadTaghi Hajiaghayi | D. Gamarnik | D. Coppersmith | G. Sorkin | M. Hajiaghayi
[2] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[3] David Bruce Wilson. On the critical exponents of random k-SAT , 2002, Random Struct. Algorithms.
[4] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[5] N. Wormald. Differential Equations for Random Processes and Random Graphs , 1995 .
[6] Joel Spencer. Ten Lectures on the Probabilistic Method: Second Edition , 1994 .
[7] Andreas Goerdt. A Threshold for Unsatisfiability , 1996, J. Comput. Syst. Sci..
[8] Endre Szemerédi,et al. On the second eigenvalue of random regular graphs , 1989, STOC '89.
[9] Olivier Dubois,et al. Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.
[10] Yann Verhoeven. Random 2-SAT and unsatisfiability , 1999, Inf. Process. Lett..
[11] Wenceslas Fernandez de la Vega,et al. Random 2-SAT: results and problems , 2001, Theor. Comput. Sci..
[12] Cristopher Moore,et al. The Asymptotic Order of the k-SAT Threshold , 2002 .
[13] J. Michael Steele,et al. The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .
[14] D. Aldous. Asymptotics in the random assignment problem , 1992 .
[15] Lefteris M. Kirousis,et al. The probabilistic analysis of a greedy satisfiability algorithm , 2002, Random Struct. Algorithms.
[16] Nadia Creignou,et al. Approximating The Satisfiability Threshold For Random K-Xor-Formulas , 2003, Comb. Probab. Comput..
[17] Colin McDiarmid,et al. Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .
[18] Yuval Peres,et al. The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.
[19] Uri Zwick,et al. Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.
[20] Luca Trevisan,et al. Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..
[21] Nadia Creignou,et al. Satisfiability Threshold for Random XOR-CNF Formulas , 1999, Discret. Appl. Math..
[22] Nadia Creignou,et al. Smooth and sharp thresholds for random k-XOR-CNF satisfiability , 2003, RAIRO Theor. Informatics Appl..
[23] Yann Verhoeven. Quelques utilisations des arbres en combinatoire , 2001 .
[24] Maria J. Serna,et al. Bounds on the max and min bisection of random cubic and random 4-regular graphs , 2003, Theor. Comput. Sci..
[25] Uri Zwick,et al. A 7/8-approximation algorithm for MAX 3SAT? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[26] S. Janson,et al. Bounding the unsatisfiability threshold of random 3-SAT , 2000 .
[27] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.
[28] Alan M. Frieze,et al. Avoiding a giant component , 2001, Random Struct. Algorithms.
[29] Paola Campadelli,et al. An Upper Bound for the Maximum Cut Mean Value , 1997, WG.
[30] Alan M. Frieze,et al. On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.
[31] E. Friedgut,et al. Sharp thresholds of graph properties, and the -sat problem , 1999 .
[32] Béla Bollobás,et al. The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.