Double Circulant Codes over $$\mathbb{Z}_4 $$ and Even Unimodular Lattices

AbstractWith the help of some new results about weight enumerators of self-dual codes over $$\mathbb{Z}_4 $$ we investigate a class of double circulant codes over $$\mathbb{Z}_4 $$ , one of which leads to an extremal even unimodular 40–dimensional lattice. It is conjectured that there should be “Nine more constructions of the Leech lattice”

[1]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[2]  N. J. A. Sloane,et al.  On the Classification and Enumeration of Self-Dual Codes , 1975, J. Comb. Theory, Ser. A.

[3]  N. Sloane Error-Correcting Codes and Invariant Theory: New Applications of a Nineteenth-Century Technique , 1977 .

[4]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[5]  N. Sloane,et al.  Twenty-three constructions for the Leech lattice , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Michael Klemm Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4 , 1989 .

[8]  N. J. A. Sloane,et al.  The Binary Self-Dual Codes of Length up to 32: A Revised Enumeration , 1992, J. Comb. Theory, Ser. A.

[9]  N. J. A. Sloane,et al.  The Nordstrom-Robinson Code is the Binary Image of 19 the Octacode , 1992, Coding And Quantization.

[10]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[11]  N. J. A. Sloane,et al.  Self-Dual Codes over the Integers Modulo 4 , 1993, J. Comb. Theory, Ser. A.

[12]  David J. Benson,et al.  Polynomial invariants of finite groups , 1993 .

[13]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[14]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[15]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[16]  A. Robert Calderbank,et al.  Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.

[17]  Codes sur des anneaux finis et reseaux arithmetiques , 1995 .