Application of Nanofluids in Thermal Performance Enhancement of Parabolic Trough Solar Collector: State-of-the-Art

[1]  Nathan Hordy,et al.  High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors , 2014 .

[2]  Evangelos Bellos,et al.  Parametric investigation of nanofluids utilization in parabolic trough collectors , 2017 .

[3]  Dilip Jain,et al.  Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage , 2015 .

[4]  Alibakhsh Kasaeian,et al.  Performance evaluation and nanofluid using capability study of a solar parabolic trough collector , 2015 .

[5]  A. Minea,et al.  Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison , 2018 .

[6]  Soteris A. Kalogirou,et al.  Exergy analysis of solar thermal collectors and processes , 2016 .

[7]  A. Alemrajabi,et al.  Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector , 2016 .

[8]  P. K. Nagarajan,et al.  Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime , 2018 .

[9]  J. Solano,et al.  Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids , 2016 .

[10]  J. Minardi,et al.  Performance of a “black” liquid flat-plate solar collector☆ , 1975 .

[11]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[12]  A. Kasaeian,et al.  Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector , 2017 .

[13]  U. C. Arunachala,et al.  Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques , 2018 .

[14]  Josua P. Meyer,et al.  Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios , 2017 .

[15]  Aliakbar Akbarzadeh,et al.  Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid , 2015 .

[16]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[17]  G. Zhu Development of an Analytical Optical Method for Linear Fresnel Collectors , 2013 .

[18]  Zhongjie Huan,et al.  Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water-Al2O3 nanofluid , 2015 .

[19]  Eric C. Okonkwo,et al.  Thermal performance analysis of a parabolic trough collector using water-based green-synthesized nanofluids , 2018 .

[20]  Vittorio Ferraro,et al.  Parabolic Trough System Operating with Nanofluids: Comparison with the Conventional Working Fluids and Influence on the System Performance☆ , 2016 .

[21]  A. Asselman,et al.  The study of the performance of a parabolic trough collector in the region of north-west of Morocco , 2018 .

[22]  M. S. Khalil,et al.  Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions , 2018 .

[23]  Umesh Kumar Sinha,et al.  A Novel Solution Methodology for the Optimization of Thermal Analysis in the Solar Parabolic Trough Collector , 2016 .

[24]  S. Parvin,et al.  Heat transfer and entropy generation through nanofluid filled direct absorption solar collector , 2014 .

[25]  İ. Yılmaz,et al.  Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid , 2018 .

[27]  Evangelos Bellos,et al.  Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors , 2017 .

[28]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[29]  Evangelos Bellos,et al.  A review of concentrating solar thermal collectors with and without nanofluids , 2018, Journal of Thermal Analysis and Calorimetry.

[30]  Siamak Kazemzadeh Hannani,et al.  Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study , 2017 .

[31]  M. Mehrpooya,et al.  Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids , 2018 .

[32]  U. C. Arunachala,et al.  Solar parabolic trough collectors: A review on heat transfer augmentation techniques , 2017 .

[33]  T. Ming,et al.  Heat transfer network for a parabolic trough collector as a heat collecting element using nanofluid , 2018, Renewable Energy.

[34]  Jinliang Xu,et al.  Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid , 2016 .

[35]  A. Allouhi,et al.  Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications , 2018 .

[36]  Alibakhsh Kasaeian,et al.  Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid , 2014 .

[37]  Samuel Asumadu-Sarkodie,et al.  A review of renewable energy sources, sustainability issues and climate change mitigation , 2016 .

[38]  Ilinca Nastase,et al.  Thermodynamic investigation on an innovative unglazed transpired solar collector , 2016 .

[39]  Gianluca Coccia,et al.  Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield , 2016 .

[40]  Evangelos Bellos,et al.  Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors , 2017 .

[41]  Arun Kumar Tiwari,et al.  Progress of nanofluid application in solar collectors: A review , 2015 .

[42]  E. Bellos,et al.  Enhancing the performance of parabolic trough collectors using nanofluids and turbulators , 2018, Renewable and Sustainable Energy Reviews.

[43]  E. Papanicolaou,et al.  Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model , 2016 .

[44]  P. K. Nagarajan,et al.  Nanofluids for Solar Collector Applications: A Review , 2014 .

[45]  Christopher W. Jones,et al.  Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. , 2011, ChemSusChem.

[46]  Ali Akbar Ranjbar,et al.  Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study , 2016 .

[47]  E. Bellos,et al.  Thermal efficiency enhancement of nanofluid-based parabolic trough collectors , 2018, Journal of Thermal Analysis and Calorimetry.

[48]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[49]  E. Bellos,et al.  Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids , 2018 .

[50]  M. Hasanuzzaman,et al.  Evaluation of the effect of nanofluid-based absorbers on direct solar collector , 2012 .

[51]  Josua P. Meyer,et al.  Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid , 2015 .

[52]  G. Nandan,et al.  Performance enhancement of a renewable thermal energy collector using metallic oxide nanofluids , 2018 .

[53]  Matthias Ruth,et al.  Evacuated tube collectors: A notable driver behind the solar water heater industry in China , 2015 .

[54]  Eric C. Okonkwo,et al.  Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage , 2018, Journal of Solar Energy Engineering.

[55]  Miguel Rios,et al.  Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids , 2018, Renewable Energy.

[56]  K. A. Antonopoulos,et al.  Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube , 2016 .

[57]  D. Wen,et al.  Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors , 2016 .

[58]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[59]  Todd Otanicar,et al.  Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector , 2012 .

[60]  Yiding Cao,et al.  Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review , 2010 .

[61]  Josua P. Meyer,et al.  Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid , 2016 .

[62]  A. Ranjbar,et al.  Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants , 2017 .

[63]  R. Boukhanouf,et al.  An Experimental Investigation on the Effect of Ferrofluids on the Efficiency of Novel Parabolic Trough Solar Collector Under Laminar Flow Conditions , 2019 .

[64]  P. K. Nagarajan,et al.  Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids , 2018 .

[65]  Ebrahim Afshari,et al.  Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector , 2016 .

[66]  M. Hatami,et al.  Enhanced Efficiency in Concentrated Parabolic Solar Collector (CPSC) with a Porous Absorber Tube Filled with Metal Nanoparticle Suspension , 2018 .

[67]  C. Ménézo,et al.  Study of the thermal and electrical performances of PVT solar hot water system , 2014 .