Geomorphological evidence for ground ice on dwarf planet Ceres

[1]  H. Y. McSween,et al.  Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy , 2017, Science.

[2]  F. G. Carrozzo,et al.  Detection of local H2O exposed at the surface of Ceres , 2016, Science.

[3]  C. Russell,et al.  The geomorphology of Ceres , 2016, Science.

[4]  C. Russell,et al.  Cratering on Ceres: Implications for its crust and evolution , 2016, Science.

[5]  C. Russell,et al.  A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.

[6]  C. Russell,et al.  Composition and structure of the shallow subsurface of Ceres revealed by crater morphology , 2016 .

[7]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[8]  C. Russell,et al.  Sublimation in bright spots on (1) Ceres , 2015, Nature.

[9]  O. Aharonson,et al.  Thermal stability of ice on Ceres with rough topography , 2015 .

[10]  B. Ehlmann,et al.  Long-runout landslides and the long-lasting effects of early water activity on Mars , 2015 .

[11]  C. Russell,et al.  Mass Movement on Vesta at Steep Scarps and Crater Rims , 2014 .

[12]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[13]  C. Russell,et al.  High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites , 2013 .

[14]  J. Moore,et al.  Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating , 2012 .

[15]  F. D. Blasio,et al.  Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice , 2011 .

[16]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[17]  N. Barlow,et al.  Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement , 2010 .

[18]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[19]  M. Zolotov On the composition and differentiation of Ceres , 2009 .

[20]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[21]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[22]  Christophe Ancey,et al.  Plasticity and geophysical flows: A review , 2007 .

[23]  S. Stewart,et al.  Impact crater formation in icy layered terrains on Mars , 2006 .

[24]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[25]  C. T. Russell,et al.  Differentiation of the asteroid Ceres as revealed by its shape , 2005, Nature.

[26]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[27]  F. Legros The mobility of long-runout landslides , 2002 .

[28]  O. Humlum The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland , 2000 .

[29]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[30]  Michael C. Malin,et al.  Mass movements on Venus: Preliminary results from Magellan cycle 1 observations , 1992 .

[31]  P. Feldman,et al.  Water vaporization on Ceres , 1992 .

[32]  F. Fanale,et al.  The water regime of asteroid (1) Ceres , 1989 .

[33]  B. Lucchitta Valles Marineris, Mars: Wet debris flows and ground ice , 1987 .

[34]  J. Weertman Creep Deformation of Ice , 1983 .

[35]  L. Lebofsky,et al.  The 1.7- to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals , 1981 .

[36]  S. E. White Rock Glaciers and Block fields, Review and new data , 1976, Quaternary Research.

[37]  Christopher T. Russell,et al.  The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres , 2012 .

[38]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[39]  P. Mouginis-Mark Ejecta emplacement and modes of formation of Martian fluidized ejecta craters , 1981 .