Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments

Optical rectification of femtosecond pulses in nonlinear materials is an efficient method to generate ultra-short terahertz (THz) pulses in a wide frequency range extending from 100 GHz to well above 10 THz. Lithium niobate (LN) is well suited for such a purpose despite the high absorption in the THz range. In this part we will focus on the various experimental realizations to produce THz radiation in bulk, periodically, aperiodically and two-dimensionally poled LN. The possible bandwidth, tunability and the techniques to overcome the high absorption will be discussed as well.

[1]  Hiroyuki Yokoyama,et al.  Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. , 2005, Optics letters.

[2]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[3]  R. Beigang,et al.  Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate. , 2001, Optics express.

[4]  Xiang Zhang,et al.  Terahertz optical rectification from 〈110〉 zinc‐blende crystals , 1994 .

[5]  D. Kleinman,et al.  Cerenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media , 1984, Topical Meeting on Ultrafast Phenomena.

[6]  Ajay Nahata,et al.  A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling , 1996 .

[7]  R. Jacobsen,et al.  Generation and detection of terahertz pulses from biased semiconductor antennas , 1996 .

[8]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[9]  Martin M. Fejer,et al.  All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion , 2001 .

[10]  Wei Shi,et al.  A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications , 2004 .

[11]  Yuen-Ron Shen,et al.  Far-infrared generation by optical mixing , 1976 .

[12]  Daniel R. Grischkowsky,et al.  A Cherenkov source for freely-propagating terahertz beams , 1989 .

[13]  A. Peters,et al.  Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm , 2002 .

[14]  T. Norris,et al.  Domain mapping of periodically poled lithium niobate via terahertz wave form analysis , 2000 .

[15]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[16]  P. Jepsen,et al.  Detection of THz pulses by phase retardation in lithium tantalate. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  W. Hurlbut,et al.  Terahertz pulse shaping via optical rectification in poled lithium niobate , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[18]  Carsten Weiss,et al.  Generation of narrowband THz radiation by surface-emitted optical rectification in periodically poled lithium niobate , 2001, SPIE Optics + Photonics.

[19]  Kodo Kawase,et al.  Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal , 2002 .

[20]  Yujie J. Ding,et al.  Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium. , 2004, Optics letters.

[21]  Kodo Kawase,et al.  Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition , 1997 .

[22]  K. Kawase,et al.  Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate. , 2000, Optics letters.

[23]  Martin C. Nuss,et al.  Electrooptical generation and detection of femtosecond electrical transients , 1988 .

[24]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[25]  Kodo Kawase,et al.  Tunable terahertz-wave parametric oscillators using LiNbO/sub 3/ and MgO:LiNbO/sub 3/ crystals , 2000 .

[26]  Chiko Otani,et al.  Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler , 2006 .

[27]  Kurz,et al.  Investigation of anharmonic lattice vibrations with coherent phonon polaritons. , 1994, Physical review. B, Condensed matter.

[28]  Yuri Avetisyan,et al.  A new method of terahertz difference frequency generation using periodically poled waveguide , 1999 .

[29]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[30]  B. Gu,et al.  Generation of narrow-band terahertz radiation with preset frequency components in poled ferroelectric materials , 2005 .

[31]  Timothy J. Carrig,et al.  Scaling of terahertz radiation via optical rectification in electro‐optic crystals , 1995 .

[32]  J. Yardley,et al.  Generation of Terahertz Radiation From a Poled Polymer , 1995 .

[33]  R L Byer,et al.  16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs. , 1998, Optics letters.

[34]  J. Kuhl,et al.  Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO/sub 3/ in the THz range , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[35]  J. Kuhl,et al.  Scaling up the energy of THz pulses created by optical rectification. , 2005, Optics express.

[36]  Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals , 2002 .

[37]  K. Vodopyanov,et al.  Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format. , 2006, Optics express.

[38]  A. Harada,et al.  Bulk periodically poled MgO‐LiNbO3 by corona discharge method , 1996 .

[39]  R. Beigang,et al.  Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate. , 2001, Optics letters.

[41]  R. Averitt,et al.  Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses. , 2003, Optics express.

[42]  D. R. Bosomworth THE FAR INFRARED OPTICAL PROPERTIES OF LiNbO3 , 1966 .

[43]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[44]  Klaas Wynne,et al.  An integrated description of terahertz generation through optical rectification, charge transfer, and current surge , 2005 .

[45]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[46]  G. Boyd,et al.  Parametric Interaction of Focused Gaussian Light Beams , 1968 .

[47]  Yaochun Shen,et al.  Theory of far-infrared generation by optical mixing , 1977 .

[48]  T. Norris,et al.  Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate , 2000 .

[49]  Xiang Zhang,et al.  Free‐space radiation from electro‐optic crystals , 1990 .

[50]  M. Fejer,et al.  Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO(3). , 1996, Optics letters.

[51]  Hiromasa Ito,et al.  Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide , 2001 .

[52]  Arnold Migus,et al.  Generation of ultrabroadband femtosecond pulses in the mid‐infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate , 1995 .

[53]  Peter Günter,et al.  Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment , 2006 .

[54]  Hanspeter Helm,et al.  Far Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy , 1999 .

[55]  Gerard Mourou,et al.  Subpicosecond electrical sampling , 1983 .

[56]  Peter G. Schunemann,et al.  Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers , 2004 .

[57]  D. Rytz,et al.  Periodically poled potassium niobate for second-harmonic generation at 463 nm. , 1999, Optics letters.

[58]  K. Kawase,et al.  Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling. , 1999, Optics letters.

[59]  Almantas Galvanauskas,et al.  Tunable narrow-band terahertz generation from periodically poled lithium niobate , 2001, QELS 2001.

[60]  G. D. Miller,et al.  Periodically poled lithium niobate: Modeling, fabrication, and nonlinear optical performance , 1998 .

[61]  Nobuo Takeuchi,et al.  Far-Infrared Difference-Frequency Generation by Picosecond Laser Pulses , 1970 .

[62]  Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification , 2005, physics/0503173.

[63]  Kodo Kawase,et al.  COHERENT TUNABLE THZ-WAVE GENERATION FROM LINBO3 WITH MONOLITHIC GRATING COUPLER , 1996 .

[64]  János Hebling,et al.  Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts , 2004 .

[65]  N. M. Froberg,et al.  Generation of tunable narrow‐band THz radiation from large aperture photoconducting antennas , 1994 .

[66]  Larry R. Dalton,et al.  Resonance enhanced THz generation in electro-optic polymers near the absorption maximum , 2004 .

[67]  D. A. Roberts,et al.  Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions , 1992 .

[68]  Xiang Zhang,et al.  Terahertz beam generation by femtosecond optical pulses in electro‐optic materials , 1992 .

[69]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[70]  Jacob B. Khurgin Comparison of different optical methods of THz generation , 1999, Photonics West.

[71]  David H. Auston,et al.  Subpicosecond electro‐optic shock waves , 1983 .

[72]  J. Kuhl,et al.  Velocity matching by pulse front tilting for large area THz-pulse generation. , 2002, Optics express.

[73]  X. C. Zhang,et al.  Electrooptic sampling of freely propagating terahertz fields , 1996 .

[74]  Almantas Galvanauskas,et al.  Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate , 2000 .

[75]  S. Wada,et al.  Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser. , 1999, Optics letters.

[76]  Paul R. Berman,et al.  Generation of Far Infrared as a Difference Frequency , 1965 .

[77]  F. Tauser,et al.  Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz , 2000 .

[78]  J. Faure,et al.  Modelling Laser-Based Table-Top THz Sources: Optical Rectification, Propagation and Electro-Optic Sampling , 2004 .

[79]  Wei Shi,et al.  Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. , 2002, Optics letters.

[80]  János Hebling,et al.  THz generation via optical rectification with ultrashort laser pulse focused to a line , 2005 .

[81]  X-C Zhang,et al.  Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation. , 2002, Optics letters.

[82]  P. K. Tien,et al.  OPTICAL SECOND HARMONIC GENERATION IN FORM OF COHERENT CERENKOV RADIATION FROM A THIN‐FILM WAVEGUIDE , 1970 .