Probing isotope shifts in 103Rh and 195Pt NMR spectra with density functional theory.

Zero-point vibrationally averaged (rg(0)) structures were computed at the PBE0/SDD/6-31G* level for the [Pt(35)Cln(37)Cl5-n(H2(18)O)](-) (n = 0-5), cis-Pt(35)Cln(37)Cl4-n(H2(18)O)(H2(16)O) (n = 0-4), fac-[Pt(35)Cln(37)Cl3-n(H2(18)O)(H2(16)O)2](+) (n = 0-3), [Pt(35)Cln(37)Cl5-n((16/18)OH)](2-) (n = 0-5), cis-[Pt(35)Cln(37)Cl4-n((16/18)OH)2](2-) (n = 0-4), fac-[Pt(35)Cln(37)Cl3-n((16/18)OH)3](2-) (n = 0-3), cis-[Pt(35)Cln(37)Cl2-n((16/18)OH)4](2-) (n = 0-2), [Pt(35)Cln(37)Cl1-n((16/18)OH)5](2-) (n = 0-1), [Rh(35)Cln(37)Cl5-n(H2O)](2-) (n = 0-5), cis-[Rh(35)Cln(37)Cl4-n(H2O)2](-) (n = 0-4), and fac-Rh(35)Cln(37)Cl3-n(H2O)3 (n = 0-3) isotopologues and isotopomers. Magnetic shielding constants, computed at the ZORA-SO/PW91/QZ4P/TZ2P level, were used to evaluate the corresponding (35/37)Cl isotope shifts on the (195)Pt and (103)Rh NMR spectra, which are known experimentally. While the observed effects are reproduced reasonably well computationally in terms of qualitative trends and the overall order of magnitude (ca. 1 ppm), quantitative agreement with experiment is not yet achieved. Only small changes in M-Cl and M-O bonds upon isotopic substitution, on the order of femtometers, are necessary to produce the observed isotope shifts.

[1]  P. Murray A speciation study of various Pt(II) and Pt(IV) complexes including hexaaquaplatinum(IV) by means of 195Pt NMR spectroscopy, in support of a preliminary study of the oxidation mechanism of various Pt(II) complexes , 2012 .

[2]  K. R. Koch,et al.  (35/37)Cl and (16/18)O isotope resolved 195Pt NMR: unique spectroscopic 'fingerprints' for unambiguous speciation of [PtCl(n)(H2O)(6-n)](4-n) (n = 2-5) complexes in an acidic aqueous solution. , 2012, Dalton transactions.

[3]  K. R. Koch,et al.  35Cl/37Cl isotope effects in 103Rh NMR of [RhCl(n)(H2O)(6-n)](3-n) complex anions in hydrochloric acid solution as a unique 'NMR finger-print' for unambiguous speciation. , 2012, Analytica chimica acta.

[4]  John C. Davis,et al.  On the Origin of (35/37)Cl Isotope Effects on (195)Pt NMR Chemical Shifts. A Density Functional Study. , 2012, Journal of chemical theory and computation.

[5]  T. van Mourik,et al.  NMR spectroscopy: quantum‐chemical calculations , 2011 .

[6]  J. Autschbach,et al.  Solvent effects and dynamic averaging of 195Pt NMR shielding in cisplatin derivatives. , 2011, Inorganic chemistry.

[7]  M. Bühl,et al.  Water versus acetonitrile coordination to uranyl. Density functional study of cooperative polarization effects in solution. , 2011, Inorganic chemistry.

[8]  K. R. Koch,et al.  A comparison of experimental and DFT calculations of 195Pt NMR shielding trends for [PtXnY6−n]2− (X, Y = Cl, Br, F and I) anions , 2010, Magnetic resonance in chemistry : MRC.

[9]  K. R. Koch,et al.  A 195Pt NMR study of the oxidation of [PtCl4]2− with chlorate, bromate, and hydrogen peroxide in acidic aqueous solution , 2010 .

[10]  J. Autschbach,et al.  Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution. , 2010, Journal of the American Chemical Society.

[11]  K. R. Koch,et al.  (195)Pt NMR isotopologue and isotopomer distributions of [PtCl(n)(H(2)O)(6 - n)](4 - n) (n = 6,5,4) species as a fingerprint for unambiguous assignment of isotopic stereoisomers. , 2008, Dalton transactions.

[12]  W. Price,et al.  195Pt NMR--theory and application. , 2007, Chemical Society reviews.

[13]  J. Autschbach,et al.  Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging. , 2006, Journal of the American Chemical Society.

[14]  K. R. Koch,et al.  195Pt NMR and DFT computational methods as tools towards the understanding of speciation and hydration/solvation of [PtX6]2- (X = Cl-, Br-) anions in solution. , 2006, Dalton transactions.

[15]  I. Butler,et al.  An Overview of 195Pt Nuclear Magnetic Resonance Spectroscopy , 2006 .

[16]  J. Autschbach,et al.  Toward an accurate determination of 195Pt chemical shifts by density functional computations: the importance of unspecific solvent effects and the dependence of Pt magnetic shielding constants on structural parameters. , 2006, Inorganic chemistry.

[17]  J. Keeler Understanding NMR Spectroscopy , 2005 .

[18]  M. Bühl,et al.  Computational (59)Co NMR Spectroscopy:  Beyond Static Molecules. , 2005, Journal of chemical theory and computation.

[19]  F. Rotzinger Performance of molecular orbital methods and density functional theory in the computation of geometries and energies of metal aqua ions. , 2005, The journal of physical chemistry. B.

[20]  S. Gaemers,et al.  103Rh NMR spectroscopy and its application to rhodium chemistry , 2004, Magnetic resonance in chemistry : MRC.

[21]  A. Ceccon,et al.  103Rh NMR chemical shifts in organometallic complexes: a combined experimental and density functional study. , 2004, Chemistry.

[22]  B. le Guennic,et al.  Solvent effects on 195Pt and 205Tl NMR chemical shifts of the complexes [(NC)5Pt--Tl(CN)n]n- (n=0-3), and [(NC)5Pt--Tl--Pt(CN)5]3- studied by relativistic density functional theory. , 2004, Chemistry.

[23]  Vincenzo Barone,et al.  Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation. , 2004, The Journal of chemical physics.

[24]  K. Ruud,et al.  Vibrational corrections to indirect nuclear spin–spin coupling constants calculated by density-functional theory , 2003 .

[25]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[26]  P. Åstrand,et al.  Zero-point vibrational effects on proton shieldings: functional-group contributions from ab initio calculations. , 2001, Journal of the American Chemical Society.

[27]  P. Åstrand,et al.  An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules , 2000 .

[28]  Tom Ziegler,et al.  An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package , 1999 .

[29]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[30]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[33]  L. I. Elding,et al.  Water exchange of trans-dichlorodiaquaplatinum(II) and tetraaquaplatinum(II) studied by an oxidative-addition quenching technique. Isotopic shifts and platinum-195 NMR chemical shifts for mixed chloro-aqua complexes of platinum(II) and platinum(IV) , 1989 .

[34]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[35]  C. Jameson,et al.  Isotope and temperature dependence of transition-metal shielding in complexes of the type M(XY)6 , 1987 .

[36]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[37]  A. Jameson,et al.  Rovibrational averaging of nuclear shielding in MX6‐type molecules , 1986 .

[38]  A. Jameson,et al.  Temperature dependence of 77Se, 125Te, and 19F shielding and M‐induced 19F isotope shifts in MF6 molecules , 1986 .

[39]  A. Jameson,et al.  The Temperature Dependence of the19F Resonance in Isolated F2C = CFX Molecules (X: -H, -Cl, -Br, -I). , 1986 .

[40]  D. Rehder,et al.  Isotope effects and coupling constants in [CpV-(CO)3(1,2H)]− and the 13CO and C18O isotopomers of CpV(CO)4 and [V(CO)6]− , 1986 .

[41]  D. Rehder,et al.  Carbonylniobium chemistry : III. Tricarbonyl-η5-cyclopentadienylhydridoniobate(−I): Preparation and 93Nb NMR spectroscopic invesitgation of [Et4N][CpNb(H)(CO)3] and [Et4N][CpNb(D)(CO)3]☆ , 1982 .

[42]  W. Mcfarlane,et al.  Studies of tungsten-183 magnetic shielding by heteronuclear magnetic double and triple resonance , 1976 .

[43]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[44]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[45]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[46]  James P. Evans The Origin , 2009, Genetics in Medicine.

[47]  M. Bühl Chapter 3 DFT Computations of Transition-Metal Chemical Shifts , 2008 .

[48]  Jochen Autschbach,et al.  Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs , 2008, Magnetic resonance in chemistry : MRC.

[49]  Vincenzo Barone,et al.  Anharmonic vibrational properties by a fully automated second-order perturbative approach. , 2005, The Journal of chemical physics.

[50]  M. Bühl,et al.  Simulation of 59Co NMR chemical shifts in aqueous solution. , 2005, Chemistry.

[51]  C. Wagner,et al.  Structure and vibrational spectra of cis-diaquatetra-chloroplatinum(IV)-(18-crown-6)-water (1/1/2), cis-[PtCl4(H2O)2]·(18-cr-6)·2H2O , 2000 .

[52]  P. S. Pregosin,et al.  Transition metal nuclear magnetic resonance , 1991 .

[53]  H. Osten,et al.  Theoretical Aspects of Isotope Effects on Nuclear Shielding , 1986 .

[54]  P. Sadler,et al.  Chlorine and bromine isotope shifts in 195Pt n.m.r. spectra , 1980 .

[55]  E. Deutsch,et al.  TRANS EFFECT IN OCTAHEDRAL COMPLEXES. 3. COMPARISON OF KINETIC AND STRUCTURAL L TRANS EFFECTS INDUCED BY COORDINATED SULFUR IN SULFITO- AND SULFINATOPENTAAMINECOBALT(III) COMPLEXES , 1978 .

[56]  Bendall,et al.  Proton-deuterium isotope shifts in 59Co N.M.R. , 1978 .

[57]  E. Deutsch,et al.  Trans effect in octahedral complexes. I. Rates of ligation of trans-(sulfinato-S)methanolbis(dimethylglyoximato)cobalt(III) complexes in methanol , 1975 .