Portfolio management with higher moments: the cardinality impact

In this paper we extend the study of the cardinality impact from the standard mean-variance scenario to higher moments, considering a utility maximization framework. For each scenario, we propose a bi-objective model that allows the investor to directly analyse the efficient trade-off between expected utility and cardinality. We study not only the effect of cardinality in each scenario but also the real gain of considering higher moments in portfolio management. This analysis is performed assuming that the investor has constant relative risk aversion (CRRA) preferences. For the data collected on the PSI20 index, the empirical results showed that there are no performance gains, in-sample, from the efficient mean-variance expected utility/cardinality portfolios to the efficient expected utility/cardinality portfolios when higher moments are considered. However, the out-of-sample performance of the efficient mean-variance-skewness expected utility/cardinality portfolios and of the efficient mean-variance-skewness-kurtosis expected utility/cardinality portfolios suggest the existence of real gains, especially when transaction costs are considered.

[1]  Robert Tibshirani,et al.  An Introduction to the Bootstrap CHAPMAN & HALL/CRC , 1993 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[4]  M. Statman,et al.  How Many Stocks Make a Diversified Portfolio? , 1987, Journal of Financial and Quantitative Analysis.

[5]  Andrew L. Turner,et al.  Daily stock market volatility: 1928–1989 , 1992 .

[6]  R. Litzenberger,et al.  SKEWNESS PREFERENCE AND THE VALUATION OF RISK ASSETS , 1976 .

[7]  George C. Tiao,et al.  Kurtosis of GARCH and stochastic volatility models with non-normal innovations , 2003 .

[8]  J. Zakoian Threshold heteroskedastic models , 1994 .

[9]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[10]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[11]  Fred D. Arditti RISK AND THE REQUIRED RETURN ON EQUITY , 1967 .

[12]  Raman Uppal,et al.  Stock Return Serial Dependence and Out-of-Sample Portfolio Performance , 2013 .

[13]  Arun J. Prakash,et al.  Portfolio selection and skewness: Evidence from international stock markets , 1997 .

[14]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[15]  Luís N. Vicente,et al.  Efficient Cardinality/Mean-Variance Portfolios , 2013, System Modelling and Optimization.

[16]  Alba V. Olivares-Nadal,et al.  Technical Note - A Robust Perspective on Transaction Costs in Portfolio Optimization , 2018, Oper. Res..

[17]  Pedro Santa-Clara,et al.  Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns , 2004 .

[18]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[19]  Daniel Bienstock,et al.  Computational Study of a Family of Mixed-Integer Quadratic Programming Problems , 1995, IPCO.

[20]  John L. Evans,et al.  DIVERSIFICATION AND THE REDUCTION OF DISPERSION: AN EMPIRICAL ANALYSIS , 1968 .

[21]  R. Thaler,et al.  Naive Diversification Strategies in Defined Contribution Saving Plans , 2001 .

[22]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[23]  Michael W. Brandt,et al.  Variable Selection for Portfolio Choice , 2001 .

[24]  R. Flôres,et al.  Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice , 2004 .

[25]  Enrique Sentana,et al.  Multivariate Location-Scale Mixtures of Normals and Mean-Variance-Skewness Portfolio Allocation , 2009 .

[26]  Craig L. Israelsen A refinement to the Sharpe ratio and information ratio , 2005 .

[27]  Luís N. Vicente,et al.  Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..

[28]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[29]  José Dias Curto,et al.  Modelling heavy tails and asymmetry using ARCH-type models with stable Paretian distributions , 2007 .

[30]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[31]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[32]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[33]  Jonathan E. Fieldsend,et al.  Cardinality Constrained Portfolio Optimisation , 2004, IDEAL.

[34]  Dietmar Maringer,et al.  Global optimization of higher order moments in portfolio selection , 2009, J. Glob. Optim..

[35]  PageSébastien Optimal Hedge Fund Allocations: Do Higher Moments Matter? , 2006 .

[36]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[37]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[38]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[39]  John Liechty,et al.  Portfolio selection with higher moments , 2004 .

[40]  J. Curto,et al.  Stable Paretian Distributions: an Unconditional Model for PSI20, DAX and DJIA Indexes , 2003 .

[41]  George L. Nemhauser,et al.  A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs , 2008, INFORMS J. Comput..

[42]  Francesco Cesarone,et al.  Efficient Algorithms For Mean-Variance Portfolio Optimization With Hard Real-World Constraints , 2008 .

[43]  C. Lucas,et al.  Heuristic algorithms for the cardinality constrained efficient frontier , 2011, Eur. J. Oper. Res..

[44]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[45]  The Daily Returns of the Portuguese Stock Index: A Distributional Characterization , 2013 .

[46]  Sébastien Page,et al.  Optimal Hedge Fund Allocations , 2005 .

[47]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .