Choquet integral and fuzzy measures on locally compact space

The concept of outer regular fuzzy measures is proposed, and it is shown that a functional of certain type on the cone of positive continuous functions with compact supports is represented as a Choquet integral with respect to a outer regular fuzzy measure. It is also shown that the Choquet integral of positive continuous functions with compact supports is represented as a Lebesgue integral with the same integrands. This representation is a generalization of certain previous results of others, which are useful for computation of the upper and lower expected value.