Fault tolerant quantum dialogue protocol over a collective noise channel

In this paper, we propose two kinds of fault tolerant quantum dialogue (QD) protocols against collective-dephasing noise and collective-rotation noise, respectively. For resisting the collective noise in quantum channels, decoherence-free subspace (DFS) has been constructed with two logical qubits. The combinations of two logical qubits form four kinds of photon quartets depending on the spatial degree of freedom. Both protocols are constructed with photon quartets, which are immune to the collective noise, thereby the protocols can provide higher communication fidelity with respect to the existing QD protocols. Furthermore, we had demonstrated that the protocols can withstand the problem of information leakage and Eve’s active eavesdropping attacks.Graphical abstract

[1]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[2]  Jia Man,et al.  Relation between the Induced Flow and the Position of Typhoon: Chanchu 2006 , 2006 .

[3]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[4]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[5]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[6]  Tian-Yu Ye,et al.  Fault-tolerant authenticated quantum dialogue using logical Bell states , 2015, Quantum Inf. Process..

[7]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[8]  Qiaoyan Wen,et al.  Quantum secure direct communication over the collective amplitude damping channel , 2009 .

[9]  Tzonelih Hwang,et al.  Probabilistic authenticated quantum dialogue , 2015, Quantum Inf. Process..

[10]  Ahmed Farouk,et al.  New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states , 2017, Quantum Inf. Process..

[11]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[12]  N Imoto,et al.  Faithful qubit distribution assisted by one additional qubit against collective noise. , 2005, Physical review letters.

[13]  Shibin Zhang,et al.  Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise , 2014 .

[14]  Liu Wenyu,et al.  A New Quantum Secure Direct Communication Protocol Using Decoherence-Free Subspace , 2007 .

[15]  Rubens Viana Ramos,et al.  Quantum secure direct communication of digital and analog signals using continuum coherent states , 2016, Quantum Inf. Process..

[16]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[17]  Fuguo Deng,et al.  Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity , 2008, 0805.0032.

[18]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[19]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[20]  Ping Zhou,et al.  Deterministic secure quantum communication without maximally entangled states , 2006 .

[21]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[22]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[23]  Nanrun Zhou,et al.  Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States , 2016 .

[24]  Xia Yan,et al.  Controlled Secure Quantum Dialogue Using a Pure Entangled GHZ States , 2007 .

[25]  Xiang‐Bin Wang Fault tolerant quantum key distribution protocol with collective random unitary noise , 2005 .

[26]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[27]  Faris Alzahrani,et al.  Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics , 2017 .

[28]  Man Zhong-xiao,et al.  Controlled Bidirectional Quantum Direct Communication by Using a GHZ State , 2006 .

[29]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[30]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[31]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[32]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[33]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[34]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[35]  Tian-Yu Ye Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state , 2015, Quantum Inf. Process..

[36]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[37]  Li Dong,et al.  A controlled quantum dialogue protocol in the network using entanglement swapping , 2008 .

[38]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[39]  Tianyu Ye,et al.  Information leakage resistant quantum dialogue against collective noise , 2014, 2205.02401.

[40]  Li Dong,et al.  Quantum key distribution protocols with six-photon states against collective noise , 2009 .

[41]  Qing-yu Cai,et al.  Deterministic secure communication protocol without using entanglement , 2003 .

[42]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[43]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[44]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[45]  Shih-Hung Kao,et al.  Controlled quantum dialogue using cluster states , 2017, Quantum Inf. Process..

[46]  Bao-Cang Ren,et al.  Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates , 2015, Scientific Reports.

[47]  Fei Gao,et al.  Improving the security of secure quantum telephone against an attack with fake particles and local operations , 2009 .

[48]  He Wang,et al.  Efficient quantum dialogue using entangled states and entanglement swapping without information leakage , 2016, Quantum Inf. Process..

[49]  Wei Zhang,et al.  Experimental long-distance quantum secure direct communication. , 2017, Science bulletin.

[50]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[51]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[52]  Qian Liu,et al.  Efficient hyperentanglement purification for two-photon six-qubit quantum systems , 2016 .

[53]  Faris Alzahrani,et al.  High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states , 2017 .

[54]  Mosayeb Naseri AN EFFICIENT PROTOCOL FOR QUANTUM SECURE DIALOGUE WITH AUTHENTICATION BY USING SINGLE PHOTONS , 2011 .

[55]  Xiaolan Li,et al.  Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state , 2013, Quantum Inf. Process..

[56]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.

[57]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[58]  Qiaoyan Wen,et al.  Robust variations of the Bennett-Brassard 1984 protocol against collective noise , 2009 .

[59]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[60]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[61]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[62]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[63]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[64]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[65]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[66]  Gan Gao,et al.  Two quantum dialogue protocols without information leakage , 2010 .

[67]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[68]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[69]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[70]  Chun-Wei Yang,et al.  Quantum dialogue protocols immune to collective noise , 2013, Quantum Inf. Process..

[71]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[72]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[73]  Tian-Yu Ye,et al.  Quantum Dialogue Without Information Leakage Using a Single Quantum Entangled State , 2014 .

[74]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[75]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[76]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[77]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.