Facial Expressions Recognition Using Eigenspaces

A challenging research topic is to make the Computer Systems to recognize facial expressions from the face image. A method of facial expression recognition, based on Eigenspaces is presented in this study. Here, the authors recognize the user’s facial expressions from the input images, using a method that was customized from eigenface recognition. Evaluation was done for this method in terms of identification correctness using two different Facial Expressions databases, Cohn-Kanade facial expression database and Japanese Female Facial Expression database. The results show the effectiveness of proposed method.

[1]  Fumio Hara,et al.  The recognition of basic facial expressions by neural network , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  Demetri Terzopoulos,et al.  Analysis and Synthesis of Facial Image Sequences Using Physical and Anatomical Models , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Larry S. Davis,et al.  Computing spatio-temporal representations of human faces , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[5]  S. Demleitner [Communication without words]. , 1997, Pflege aktuell.

[6]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[7]  Zhengyou Zhang,et al.  Feature-Based Facial Expression Recognition: Sensitivity Analysis and Experiments with A Multilayer Perceptron , 1999, Int. J. Pattern Recognit. Artif. Intell..

[8]  T. Dalgleish,et al.  Handbook of cognition and emotion , 1999 .

[9]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[11]  Ronald Chung,et al.  Facial expression recognition approach for performance animation , 2001, Proceedings Second International Workshop on Digital and Computational Video.

[12]  Takeo Kanade,et al.  Evaluation of Gabor-wavelet-based facial action unit recognition in image sequences of increasing complexity , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[13]  Yuan Qi,et al.  Fully automatic upper facial action recognition , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[14]  Elmar Nöth,et al.  Automatic Pixel Selection for Optimizing Facial Expression Recognition Using Eigenfaces , 2003, DAGM-Symposium.

[15]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[16]  David J. Fleet,et al.  Design and Use of Linear Models for Image Motion Analysis , 2000, International Journal of Computer Vision.

[17]  Maja Pantic,et al.  Facial action recognition for facial expression analysis from static face images , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Daw-Tung Lin Facial Expression Classification Using PCA and Hierarchical Radial Basis Function Network , 2006, J. Inf. Sci. Eng..

[19]  Maja Pantic,et al.  Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Zhen Li,et al.  A Novel Feature Extraction Method for Facial Expression Recognition , 2006, JCIS.

[21]  R. S. Jadon,et al.  Recognizing Facial Expressions Using Eigenspaces , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[22]  Kostas Karpouzis,et al.  Robust Feature Detection for Facial Expression Recognition , 2007, EURASIP J. Image Video Process..

[23]  Ruicong Zhi,et al.  A Comparative Study on Region-Based Moments for Facial Expression Recognition , 2008, 2008 Congress on Image and Signal Processing.

[24]  R. S. Jadon,et al.  Effectiveness of Eigenspaces for Facial Expressions Recognition , 2009 .