Permanent second-harmonic generation in AgGaGeS4 bulk-crystallized chalcogenide glasses

Abstract IR transparent bulk-crystallized chalcogenide glasses purely containing nontoxic and excellent nonlinear optical crystallites AgGaGeS4 were fabricated through careful ceramization process of the as-prepared glasses with the composition 53GeS2·47AgGaGeS4 at a temperature of 350 °C for various durations. The second-order optical nonlinearity of bulk-crystallized chalcogenide glasses was discussed on the basis of Maker fringe theory. A large second-order optical nonlinearity (for λ = 1064 nm) up to 5.79 pm/V, was evaluated in the IR transparent chalcogenide glass bulk-crystallized for 24 h.

[1]  Valentin Petrov,et al.  Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS4 , 2004 .

[2]  Takashi Kondo,et al.  Absolute scale of second-order nonlinear-optical coefficients , 1997 .

[3]  Xiujian Zhao,et al.  Study of thermal and optical properties of GeS2–Ga2S3–Ag2S chalcogenide glasses , 2007 .

[4]  I. Kityk IR-induced second harmonic generation in Sb2Te3-BaF2-PbCl2 glasses , 2003 .

[5]  K. Hirao,et al.  Second-harmonic generation in Ge(20)As(25)S(55) glass irradiated by an electron beam. , 2001, Optics letters.

[6]  S. K. Kurtz,et al.  Optical Nonlinear Susceptibilities: Accurate Relative Values for Quartz, Ammonium Dihydrogen Phosphate, and Potassium Dihydrogen Phosphate , 1970 .

[7]  T. Komatsu,et al.  Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5 , 2001 .

[8]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[9]  T. Komatsu,et al.  Large second-order optical nonlinearities of fresnoite-type crystals in transparent surface-crystallized glasses , 2004 .

[10]  J. Rivet,et al.  Système pseudo-ternaire Ag2S-Ga2S3-GeS2: Diagramme de phases—Domaine vitreux , 1995 .

[11]  Xiujian Zhao,et al.  Optical second-order nonlinearity of the infrared transmitting 82GeS2∙18CdGa2S4 nanocrystallized chalcogenide glass , 2007 .

[12]  Virginie Nazabal,et al.  High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling. , 2006, Optics express.

[13]  Xiujian Zhao,et al.  Second harmonic generation in transparent microcrystalline α-CdGa2S4-containing chalcogenide glass ceramics , 2007 .

[14]  J. Si,et al.  Photoinduced stable second-harmonic generation in chalcogenide glasses. , 2001, Optics letters.

[15]  I. Kityk,et al.  Manifestation of electron–phonon interactions in IR-induced second harmonic generation in a sulphide glass-ceramic with β-GeS2 microcrystallites , 2007 .

[16]  A. Osaka,et al.  Second order optical nonlinearity of surface crystallized glass with lithium niobate , 1995 .

[17]  S. K. Kurtz,et al.  A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .

[18]  G. Tendeloo,et al.  Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals , 2006 .

[19]  R. W. Terhune,et al.  Effects of Dispersion and Focusing on the Production of Optical Harmonics , 1962 .

[20]  Virginie Nazabal,et al.  Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics , 2007 .

[21]  E. Rosencher,et al.  Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials , 2004, Nature.

[22]  C. Julien,et al.  Raman and infrared spectroscopic studies of GeGaAg sulphide glasses , 1994 .

[23]  Virginie Nazabal,et al.  Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation , 2007 .

[24]  A. Majchrowski,et al.  IR-induced second-harmonic generation in PbSe microcrystallites , 2004 .