Reflected BSDE with a constraint and its applications in an incomplete market

In this paper, we study a type of reflected BSDE with a constraint and introduce a new kind of nonlinear expectation via BSDE with a constraint and prove the Doob-Meyer decomposition with respect to the super(sub)martingale introduced by this nonlinear expectation. Then we an application on the pricing of American options in incomplete market.

[1]  Said Hamadène,et al.  Backward equations, stochastic control and zero-sum stochastic differential games , 1995 .

[2]  S. Peng,et al.  Filtration-consistent nonlinear expectations and related g-expectations , 2002 .

[3]  J. Lepeltier,et al.  Backward SDEs with two barriers and continuous coefficient: an existence result , 2004, Journal of Applied Probability.

[4]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[5]  Shige Peng,et al.  Duplicating and Pricing Contingent Claims in Incomplete Markets , 1999 .

[6]  A. Bensoussan,et al.  Nonlinear variational inequalities and differential games with stopping times , 1974 .

[7]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[8]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[9]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[10]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[11]  Chunjiang Qian,et al.  A generalized framework for global output feedback stabilization of inherently nonlinear systems with uncertainties , 2007 .

[12]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[13]  Jakša Cvitanić,et al.  Reflected forward-backward SDEs and obstacle problems with boundary conditions , 2001 .

[14]  J. Lepeltier,et al.  Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier , 2005 .

[15]  N. Karoui,et al.  Optimal derivatives design under dynamic risk measures , 2004 .

[16]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[17]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[18]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[19]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .

[20]  S. Peng Nonlinear Expectations, Nonlinear Evaluations and Risk Measures , 2004 .

[21]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[22]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[23]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[24]  Ioannis Karatzas,et al.  Backward stochastic differential equations with constraints on the gains-process , 1998 .

[25]  J. Lepeltier,et al.  Reflected BSDEs and mixed game problem , 2000 .

[26]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[27]  S. Hamadène,et al.  Reflected BSDE's with discontinuous barrier and application , 2002 .

[28]  S. Peng,et al.  The smallest g-supermartingale and reflected BSDE with single and double L2 obstacles , 2005 .

[29]  A. Skorokhod,et al.  Stochastic Equations for Diffusion Processes in a Bounded Region. II , 1962 .

[30]  H. Morimoto Dynkin games and martingale methods , 1984 .

[31]  J. Bismut Sur un problème de dynkin , 1977 .

[32]  Jakša Cvitanić,et al.  Hedging Contingent Claims with Constrained Portfolios , 1993 .

[33]  J. Lepeltier,et al.  Zero-sum stochastic differential games and backward equations , 1995 .

[34]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[35]  Steven Kou,et al.  Hedging American contingent claims with constrained portfolios , 1998, Finance Stochastics.

[36]  X. Mao,et al.  Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients , 1995 .