Theoretical and experimental studies of the N2O− and N2O ground state potential energy surfaces. Implications for the O−+N2→N2O+e and other processes

The ground state potential energy surface of the nitrous oxide negative ion is characterized and related to that of the neutral molecule by a synergetic theoretical–experimental approach. Ab initio multiconfiguration self‐consistent‐field/configuration interaction (MCSCF/CI) and other calculations for N2O−(X 2A′) yield the minimum energy geometry (ReNN, ReNO, AeNNO) = (1.222±0.05 A, 1.375±0.10 A, 132.7±2°), the vibrational frequencies (ν1,ν2,ν3) = (912±100 cm−1, 555±100 cm−1, 1666±100 cm−1), the dipole moment μ =2.42±0.3 D, and other properties. The N2O− molecular ion in the X 2A′ state is found to have a compact electronic wavefunction—one with very little diffuse character. The MCSCF/CI bending potential energy curve from 70° to 180° for the X 1Σ+(1 1A′) state of N2O as well as the bending curve for the X 2A′ state of N2O− are also reported. The dissociation energy D (N2–O−) =0.43±0.1 eV and, thus, the adiabatic electron affinity E.A.(N2O) =0.22±0.1 eV and the dissociation energy D (N–NO−) =5.1±0.1 eV a...

[1]  R. P. Hosteny,et al.  The electronic structure of nitrogen dioxide. I. Multiconfiguration self‐consistent‐field calculation of the low‐lying electronic states , 1975 .

[2]  D. Albritton,et al.  Reactions of O/-/ with N2, N2O, SO2, NH3, CH4, and C2H4 and C2H2/-/ with O2 from 300 K to relative kinetic energies of about 2 eV , 1975 .

[3]  D. G. Hopper Ab initio study of N2O+. Angular dependence of the 14A″(4Π) potential , 1975 .

[4]  G. Schulz,et al.  Measurements of electron-detachment cross sections fromO−andS− , 1974 .

[5]  I. Lazzizzera,et al.  Electron scattering from NO and N2O below 10 eV , 1974 .

[6]  M. Krauss,et al.  Multiconfiguration self-consistent-field calculation of the dipole moment function of CO/X 1 sigma +/ , 1974 .

[7]  D. Albritton,et al.  Flow‐drift technique for ion mobility and ion‐molecule reaction rate constant measurements. III. Negative ion reactions of O− with CO, NO, H2, and D2 , 1973 .

[8]  R. Compton,et al.  Molecular electron affinities from collisional ionization of cesium. I. NO, NO2, and N2O , 1973 .

[9]  E. K. Parks,et al.  Collision‐induced ion pair formation of thallium halides: Threshold behavior , 1973 .

[10]  R. Levine,et al.  Collision induced dissociation: A statistical theory , 1973 .

[11]  A. C. Wahl,et al.  New Techniques for the Computation of Multiconfiguration Self‐Consistent Field (MCSCF) Wavefunctions , 1972 .

[12]  T. Dunning Gaussian Basis Functions for Use in Molecular Calculations. IV. The Representation of Polarization Functions for the First Row Atoms and Hydrogen , 1971 .

[13]  E. Chen,et al.  Thermal Electron Attachment to Nitrous Oxide , 1971 .

[14]  T. Tiernan,et al.  Determination of the Abundance of Excited O+ Ions in Beams Produced by Electron Impact on O2, CO2, N2O, NO2, and H2O , 1971 .

[15]  T. Tiernan,et al.  Collision‐Induced Dissociation of NO+ and O2+ at Low Kinetic Energies: Effects of Internal Ionic Excitation , 1970 .

[16]  P. Chantry Formation of N2O− via Ion–Molecule Reactions in N2O , 1969 .

[17]  J. Bardsley Negative Ions of N2O and CO2 , 1969 .

[18]  W. Wentworth,et al.  Dissociative Thermal Electron Attachment to Some Aliphatic Chloro, Bromo, Iodo Compounds , 1969 .

[19]  R. Berry Small free negative ions , 1969 .

[20]  J. Moruzzi,et al.  Electron Production by Associative Detachment of O– Ions with NO, CO, and H2 , 1968 .

[21]  F. Fehsenfeld,et al.  Geometrical Considerations for Negative Ion Processes , 1967 .

[22]  F. Kaufman N2O Bond Dissociation Energy , 1967 .

[23]  J. Paulson Some Negative Ion Reactions in Simple Gases , 1967 .

[24]  F. Fehsenfeld,et al.  Thermal‐Energy Associative‐Detachment Reactions of Negative Ions , 1966 .

[25]  W. Maier Dissociative Ionization of Molecules by Rare‐Gas Ion Impact , 1965 .

[26]  W. Maier Dissociative Ionization of N2 and N2O by Rare‐Gas Ion Impact , 1964 .