Distributed tuning of machine learning algorithms using MapReduce Clusters
暂无分享,去创建一个
Rich Caruana | Sara Javanmardi | Cristina Videira Lopes | Yasser Ganjisaffar | Thomas Debeauvais | R. Caruana | C. Lopes | S. Javanmardi | Y. Ganjisaffar | Thomas Debeauvais
[1] Tao Qin,et al. LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.
[2] J. Friedman. Stochastic gradient boosting , 2002 .
[3] Tim Menzies,et al. A decision support tool for tuning parameters in a machine learning algorithm , 1997 .
[4] Yoshua Bengio,et al. An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.
[5] Nitesh V. Chawla,et al. SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..
[6] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[7] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[8] Gary M. Weiss. Mining with rarity: a unifying framework , 2004, SKDD.
[9] Alexander Nareyek,et al. Choosing search heuristics by non-stationary reinforcement learning , 2004 .
[10] Jianfeng Gao,et al. Ranking, Boosting, and Model Adaptation , 2008 .
[11] Chao Chen,et al. Using Random Forest to Learn Imbalanced Data , 2004 .
[12] B. Lang,et al. Efficient optimization of support vector machine learning parameters for unbalanced datasets , 2006 .
[13] Hisashi Kashima,et al. Roughly balanced bagging for imbalanced data , 2009, Stat. Anal. Data Min..
[14] Christopher C. Skiscim,et al. Optimization by simulated annealing: A preliminary computational study for the TSP , 1983, WSC '83.
[15] C. Weihs,et al. Response Surface Methodology for Optimizing Hyper Parameters , 2006 .
[16] Jaana Kekäläinen,et al. IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.
[17] Leo Breiman,et al. Random Forests , 2001, Machine Learning.