Control of chaotic magnetic fields in tokamaks

Chaotic magnetic field lines play an important role in plasma confinement by tokamaks. They can either be generated in the plasma as a result of natural instabilities or artifficially produced by external conductors, like resonant helical windings and ergodic magnetic limiters. This is a review of works carried out at the Universidade de Sao Paulo and Universidade Federal do Parana on theoretical and experimental aspects of generation and control of chaotic magnetic field lines in tokamaks.

[1]  F. Karger,et al.  The Pulsator tokamak , 1985 .

[2]  L. Krlín The Intrinsic Stochasticity of Near-Integrable Hamiltonian Systems , 1988 .

[3]  E. A. Jackson,et al.  Perspectives of nonlinear dynamics , 1990 .

[4]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[5]  A. Boozer,et al.  Effect of magnetic perturbations on divertor scrape-off width , 1978 .

[6]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[7]  A. Dragt,et al.  Insolubility of trapped particle motion in a magnetic dipole field , 1976 .

[8]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[9]  R. M. Castro,et al.  Plasma turbulence in tokamaks , 1998 .

[10]  C. W. Horton,et al.  Statistical physics and chaos in fusion plasmas , 1984 .

[11]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[12]  D. Robinson Ten years of results from the TOSCA device , 1985 .

[13]  R. Lathe Phd by thesis , 1988, Nature.

[14]  Vallet,et al.  Stabilization of tokamak Ohmic discharges at the density limit by means of the ergodic divertor. , 1991, Physical review letters.

[15]  J. Bittencourt Fundamentals of plasma physics , 1986 .

[16]  I. Caldas,et al.  Comments on the magnetic field generated by an infinite current grid , 1991 .

[17]  A. Morozov,et al.  The Structure of Magnetic Fields , 1966 .

[18]  T. Greenhalgh 42 , 2002, BMJ : British Medical Journal.

[19]  R. Viana,et al.  The structure of chaotic magnetic field lines in a tokamak with external nonsymmetric magnetic perturbations , 2001 .

[20]  L. Monteiro,et al.  Magnetic structure of toroidal helical fields in tokamaks , 1994 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  O. D. Almeida,et al.  Hamiltonian Systems: Chaos and Quantization , 1990 .

[23]  A. Lichtenberg Stochasticity as the mechanism for the disruptive phase of the m = 1 tokamak oscillations , 1984 .

[24]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[25]  E. Ott,et al.  Bifurcation and ’’strange’’ behavior in instability saturation by nonlinear three‐wave mode coupling , 1980 .

[26]  T. L. Rhodes,et al.  Electron thermal confinement studies with applied resonant fields on TEXT , 1989 .

[27]  Ricardo L. Viana,et al.  Bifurcations and onset of chaos on the ergodic magnetic limiter mapping , 2002 .

[28]  R. Balescu,et al.  Tokamap: A Hamiltonian twist map for magnetic field lines in a toroidal geometry , 1998 .

[29]  A. Yoshizawa,et al.  Turbulence theories and modelling of fluids and plasmas , 2001 .

[30]  R. P. Freis,et al.  Magnetic-island formation and destruction in a levitron , 1973 .

[31]  D. Haar Turbulence in fluids and plasmas , 1982 .

[32]  K. Whiteman Invariants and stability in classical mechanics , 1977 .

[33]  Ricardo L. Viana,et al.  Ergodic magnetic limiter for the TCABR , 2002 .

[34]  F. Hamzeh Magnetic-surface destruction in toroidal systems , 1974 .

[35]  R. M. Castro,et al.  Correlation between Plasma Edge Electrostatic and Magnetic Oscillations in the Brazilian Tokamak TBR , 1997 .

[36]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[37]  K. Lackner,et al.  Resonant helical divertor , 1977 .

[38]  W. Horton Drift waves and transport , 1999 .