Surface Reconstruction of Defective SrTi0.7Cu0.2Mo0.1O3-δ Perovskite Oxide Induced by In-Situ Copper Nanoparticle Exsolution for High-Performance Direct CO2 Electrolysis

[1]  Minkyu Kim,et al.  Enhancing Electrochemical CO2 Reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 Cathode for High‐Temperature Solid Oxide Electrolysis Cells , 2021, Advanced Energy Materials.

[2]  Jae-ha Myung,et al.  Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells , 2021 .

[3]  Gengfeng Zheng,et al.  Designing Copper‐Based Catalysts for Efficient Carbon Dioxide Electroreduction , 2021, Advanced materials.

[4]  Zhenhua Wang,et al.  Achieving Highly Efficient Carbon Dioxide Electrolysis by In Situ Construction of the Heterostructure. , 2021, ACS applied materials & interfaces.

[5]  X. Bao,et al.  Atomic-Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3-δ with Efficient CO2 Electrolysis. , 2020, Angewandte Chemie.

[6]  Ke-ning Sun,et al.  Boosting the Electrochemical Performance of Fe-based layered double perovskite cathode by Zn2+ doping for solid oxide fuel cells. , 2020, ACS applied materials & interfaces.

[7]  X. Bao,et al.  In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co‐Doped Sr2Fe1.5Mo0.5O6−δ Cathode for CO2 Electrolysis , 2020, Advanced materials.

[8]  K. Guan,et al.  Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells. , 2019, ACS applied materials & interfaces.

[9]  P. Ding,et al.  Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate , 2019, Advanced Energy Materials.

[10]  S. Barnett,et al.  Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: Role of stoichiometry in Sr(Ti,Fe,Ni)O3 , 2019, Journal of Power Sources.

[11]  Charlotte K. Williams,et al.  The technological and economic prospects for CO2 utilization and removal , 2019, Nature.

[12]  Chong Liu,et al.  Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction , 2019, Nature Catalysis.

[13]  Xuefeng Zhu,et al.  Nano-CeO2-Modified Cathodes for Direct Electrochemical CO2 Reduction in Solid Oxide Electrolysis Cells , 2019, ACS Sustainable Chemistry & Engineering.

[14]  H. M. Jang,et al.  Lattice strain-enhanced exsolution of nanoparticles in thin films , 2019, Nature Communications.

[15]  Dexin Yang,et al.  Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts , 2019, Nature Communications.

[16]  X. Bao,et al.  (La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell , 2018, Journal of Power Sources.

[17]  Z. Lü,et al.  A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells. , 2018, ChemSusChem.

[18]  M. G. Norton,et al.  NiMo-ceria-zirconia catalytic reforming layer for solid oxide fuel cells running on a gasoline surrogate , 2018 .

[19]  X. Bao,et al.  Enhancing electrocatalytic CO 2 reduction in solid oxide electrolysis cell with Ce 0.9 Mn 0.1 O 2−δ nanoparticles-modified LSCM-GDC cathode , 2018 .

[20]  Xinran Chen,et al.  Mixed-Conductor Sr2Fe1.5Mo0.5O6−δ as Robust Fuel Electrode for Pure CO2 Reduction in Solid Oxide Electrolysis Cell , 2017 .

[21]  Gengfeng Zheng,et al.  Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts. , 2017, Small.

[22]  F. Chen,et al.  Highly Efficient CO2 Electrolysis on Cathodes with Exsolved Alkaline Earth Oxide Nanostructures. , 2017, ACS applied materials & interfaces.

[23]  Chenghao Yang,et al.  A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells , 2017 .

[24]  Jingli Luo,et al.  Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates. , 2017, Journal of the American Chemical Society.

[25]  Zhenhua Wang,et al.  Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6-δ perovskites for solid oxide fuel cells , 2016 .

[26]  Jingli Luo,et al.  Highly Stable and Efficient Catalyst with In Situ Exsolved Fe–Ni Alloy Nanospheres Socketed on an Oxygen Deficient Perovskite for Direct CO2 Electrolysis , 2016 .

[27]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[28]  Jingli Luo,et al.  Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs. , 2016, ACS applied materials & interfaces.

[29]  S. Higgins,et al.  Three decades of multi-dimensional change in global leaf phenology , 2015 .

[30]  Zhe Zhao,et al.  Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. , 2015, Nano letters.

[31]  John T. S. Irvine,et al.  Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. , 2015, Nature materials.

[32]  Dragos Neagu,et al.  In situ growth of nanoparticles through control of non-stoichiometry. , 2013, Nature chemistry.

[33]  T. Ishihara,et al.  Ni–Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte , 2013 .

[34]  Gaetano Chiodelli,et al.  Electrochemical open circuit voltage (OCV) characterization of SOFC materials , 2013, Ionics.

[35]  P. Clark,et al.  Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation , 2012, Nature.

[36]  M. Benamira,et al.  Effect of Ce‐Doping on the Electrical and Electrocatalytical Behavior of La/Sr Chromo‐Manganite Perovskite as New SOFC Anode , 2012 .

[37]  F. Chen,et al.  Sr 2 Fe 1.5 Mo 0.5 O 6-δ as a Regenerative Anode for solid Oxide Fuel Cells , 2011 .

[38]  Zongping Shao,et al.  Synthesis and assessment of La0.8Sr0.2ScyMn1−yO3−δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte , 2008 .

[39]  Z. Lü,et al.  A study of (Ba0.5Sr0.5)1 − xSmxCo0.8Fe0.2O3 − δ as a cathode material for IT-SOFCs , 2006 .

[40]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[41]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[42]  H. Schwarz,et al.  Reduction potentials of CO2- and the alcohol radicals , 1989 .