Location based speaker segmentation

The paper proposes a technique that segments audio according to speakers and based on their location. In many multi-party conversations, such as meetings, the location of participants is restricted to a small number of regions, such as seats around a table, or at a whiteboard. In such cases, segmentation according to these discrete regions would be a reliable means of determining speaker turns. We propose a system that uses microphone pair time delays as features to represent speaker locations. These features are integrated in a GMM/HMM framework to determine an optimal segmentation of the audio according to location. The HMM framework also allows extensions to recognise more complex structures, such as the presence of two simultaneous speakers. Experiments testing the system on real recordings from a meeting room show that the proposed location features can provide greater discrimination than standard cepstral features, and also demonstrate the success of an extension to handle dual-speaker overlap.