Framework for studying online production scheduling under endogenous uncertainty

Abstract We propose a framework for studying online production scheduling in the presence of endogenous uncertainties. We address uncertainties in (i) processing times; (ii) batch yields; and (iii) unit operating status. First, we illustrate how uncertainty can result in infeasibilities in the incumbent schedule and propose a model for systematic schedule adjustment to restore feasibility in the absence of new scheduling inputs. In this model, we define variables to track and penalize changes between the new and old schedule. Second, we discuss the different probability distributions for the three uncertainties that we consider in this work and how the parameters for these distributions change with sampling frequency. Third, we present a formal procedure for carrying out closed-loop simulations and evaluating closed-loop performance in the presence of these uncertainties. Finally, using this framework we draw useful insights for the design of online scheduling algorithms in the presence of the above three uncertainties.

[1]  Christos T. Maravelias,et al.  A branch-and-bound algorithm for the solution of chemical production scheduling MIP models using parallel computing , 2013, Comput. Chem. Eng..

[2]  Minseok Kim,et al.  Rule-based reactive rescheduling system for multi-purpose batch processes , 1997 .

[3]  Narendra J. Sheth,et al.  Statistical Design and Analysis of Engineering Experiments , 1973 .

[4]  Gintaras V. Reklaitis,et al.  Reactive schedule modification in multipurpose batch chemical plants , 1994 .

[5]  Marianthi G. Ierapetritou,et al.  A New Approach for Efficient Rescheduling of Multiproduct Batch Plants , 2000 .

[6]  Fengqi You,et al.  Moving horizon approach of integrating scheduling and control for sequential batch processes , 2014 .

[7]  Krister Forsman,et al.  Production scheduling in the process industry , 2013 .

[8]  Thomas H. Wonnacott,et al.  Introductory Statistics , 2007, Technometrics.

[9]  J. D. Kelly,et al.  Crude oil blend scheduling optimization: an application with multimillion dollar benefits. Part 2 , 2003 .

[10]  Christos T. Maravelias,et al.  Valid Inequalities Based on Demand Propagation for Chemical Production Scheduling MIP Models , 2013 .

[11]  C. Floudas,et al.  Production Scheduling of a Large-Scale Industrial Batch Plant. II. Reactive Scheduling , 2006 .

[12]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[13]  Susana Relvas,et al.  Heuristic batch sequencing on a multiproduct oil distribution system , 2009, Comput. Chem. Eng..

[14]  Christos T. Maravelias,et al.  Systematic generation of alternative production schedules , 2020 .

[15]  Fei Qiao,et al.  A Novel Rescheduling Method for Dynamic Semiconductor Manufacturing Systems , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[16]  Joseph F. Pekny,et al.  Application of distributed computing to batch plant design and scheduling , 1996 .

[17]  I. Grossmann,et al.  Reformulation of multiperiod MILP models for planning and scheduling of chemical processes , 1991 .

[18]  Christos T Maravelias,et al.  Advances in mixed-integer programming methods for chemical production scheduling. , 2014, Annual review of chemical and biomolecular engineering.

[19]  C. Pantelides,et al.  Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semicontinuous Plants. 2. A Mathematical Decomposition Approach , 1996 .

[20]  J. D. Kelly,et al.  Crude oil blend scheduling optimization: an application with multimillion dollar benefits-Part 1 : Process/plant optimization , 2003 .

[21]  Ignacio E. Grossmann,et al.  A Class of stochastic programs with decision dependent uncertainty , 2006, Math. Program..

[22]  Jaime Cerdá,et al.  State-of-the-art review of optimization methods for short-term scheduling of batch processes , 2006, Comput. Chem. Eng..

[23]  Lazaros G. Papageorgiou,et al.  A hybrid MILP/CLP algorithm for multipurpose batch process scheduling , 2005, Comput. Chem. Eng..

[24]  F. Blomer,et al.  LP-based heuristics for scheduling chemical batch processes , 2000 .

[25]  Jeffrey W. Herrmann,et al.  Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods , 2003, J. Sched..

[26]  David L. Woodruff,et al.  A class of stochastic programs withdecision dependent random elements , 1998, Ann. Oper. Res..

[27]  Efstratios N. Pistikopoulos,et al.  A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids , 2015 .

[28]  Christos T. Maravelias,et al.  Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming , 2010, Eur. J. Oper. Res..

[29]  Ignacio E. Grossmann,et al.  Solution strategies for multistage stochastic programming with endogenous uncertainties , 2011, Comput. Chem. Eng..

[30]  Christos T. Maravelias,et al.  R&D pipeline management: Task interdependencies and risk management , 2011, Eur. J. Oper. Res..

[31]  Ignacio E. Grossmann,et al.  A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants , 2004, Comput. Chem. Eng..

[32]  B. A. Calfa,et al.  Hybrid Bilevel-Lagrangean Decomposition Scheme for the Integration of Planning and Scheduling of a Network of Batch Plants , 2013 .

[33]  Wei Huang,et al.  A constraint approach for rescheduling batch processing plants including pipeless plants , 2003 .

[34]  Sebastian Engell Uncertainty, decomposition and feedback in batch production scheduling , 2009 .

[35]  Gintaras V. Reklaitis,et al.  A framework for schedule evaluation with processing uncertainty , 1999 .

[36]  Dan Wu,et al.  Decomposition approaches for the efficient solution of short-term scheduling problems , 2003, Comput. Chem. Eng..

[37]  Luis A. Ricardez-Sandoval,et al.  A Computational Study of Continuous and Discrete Time Formulations for a Class of Short-Term Scheduling Problems for Multipurpose Plants , 2017 .

[38]  Christos T. Maravelias,et al.  Combining the advantages of discrete- and continuous-time scheduling models: Part 1. Framework and mathematical formulations , 2018, Comput. Chem. Eng..

[39]  Sebastian Engell,et al.  Medium-term planning of a multiproduct batch plant under evolving multi-period multi-uncertainty by means of a moving horizon strategy , 2010, Comput. Chem. Eng..

[40]  Michael Baldea,et al.  Dynamic models and fault diagnosis‐based triggers for closed‐loop scheduling , 2017 .

[41]  Christos T. Maravelias,et al.  A General Framework for Process Scheduling , 2011 .

[42]  Christos T. Maravelias,et al.  A state-space model for chemical production scheduling , 2012, Comput. Chem. Eng..

[43]  Marianthi G. Ierapetritou,et al.  Process scheduling under uncertainty: Review and challenges , 2008, Comput. Chem. Eng..

[44]  Selen Cremaschi,et al.  A branch and bound algorithm to solve large‐scale multistage stochastic programs with endogenous uncertainty , 2018 .

[45]  John M. Wassick,et al.  From rescheduling to online scheduling , 2016 .

[46]  Rainer E. Burkard,et al.  Review, extensions and computational comparison of MILP formulations for scheduling of batch processes , 2005, Comput. Chem. Eng..

[47]  L. Biegler,et al.  Discrete Time Formulation for the Integration of Scheduling and Dynamic Optimization , 2015 .

[48]  Ignacio E. Grossmann,et al.  Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty , 2015, Comput. Chem. Eng..

[49]  C. Maravelias,et al.  Computational Study of Network-Based Mixed-Integer Programming Approaches for Chemical Production Scheduling , 2011 .

[50]  I. E. Grossmann,et al.  Mathematical Programming Techniques for Optimization under Uncertainty and Their Application in Process Systems Engineering , 2017, Theoretical Foundations of Chemical Engineering.

[51]  Danielle Zyngier,et al.  Hierarchical decomposition heuristic for scheduling: Coordinated reasoning for decentralized and distributed decision-making problems , 2008, Comput. Chem. Eng..

[52]  Jaime Cerdá,et al.  Dynamic scheduling in multiproduct batch plants , 2003, Comput. Chem. Eng..

[53]  Michael Baldea,et al.  Moving horizon closed‐loop production scheduling using dynamic process models , 2017 .

[54]  Ali Elkamel,et al.  A ROLLING HORIZON HEURISTIC FOR REACTIVE SCHEDULING OF BATCH PROCESS OPERATIONS , 1999 .

[55]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[56]  Christos T. Maravelias,et al.  Combining the advantages of discrete- and continuous-time scheduling models: Part 2. systematic methods for determining model parameters , 2019, Comput. Chem. Eng..

[57]  Patricio Cortes,et al.  Model Predictive Control , 2012 .

[58]  Christos T. Maravelias,et al.  On the design of online production scheduling algorithms , 2019, Comput. Chem. Eng..

[59]  Christos T. Maravelias,et al.  A General State-Space Formulation for Online Scheduling , 2017 .

[60]  Ihsan Sabuncuoglu,et al.  Rescheduling frequency in an FMS with uncertain processing times and unreliable machines , 1999 .

[61]  Christos T. Maravelias,et al.  General framework and modeling approach classification for chemical production scheduling , 2012 .

[62]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[63]  Christos T. Maravelias,et al.  Reformulations and Branching Methods for Mixed-Integer Programming Chemical Production Scheduling Models , 2013 .

[64]  Matthew H. Bassett,et al.  Decomposition techniques for the solution of large-scale scheduling problems , 1996 .

[65]  Pedro M. Castro,et al.  Scope for industrial applications of production scheduling models and solution methods , 2014, Comput. Chem. Eng..

[66]  Pedro M. Castro,et al.  Greedy algorithm for scheduling batch plants with sequence‐dependent changeovers , 2011 .

[67]  Nilay Shah,et al.  Improving the efficiency of discrete time scheduling formulation , 1998 .

[68]  L. Puigjaner,et al.  Incorporating on-line scheduling strategies in integrated batch production control , 1995 .

[69]  Efstratios N. Pistikopoulos,et al.  Reactive Scheduling by a Multiparametric Programming Rolling Horizon Framework: A Case of a Network of Combined Heat and Power Units , 2014 .