Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds
暂无分享,去创建一个
[1] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[2] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..
[5] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[6] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[7] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[8] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[9] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..